Abstract. DNA double-strand break (DSB) is one of the most serious forms of damage induced by ionizing irradiation. Non-homologous end-joining (NHEJ) is a key mechanism of DNA DSB repair. The immunohistochemical analysis of proteins involved in NHEJ may have potential as a predictive assay for tumor radiosensitivity. We examined the correlation between the expression of proteins involved in DNA DSB in biopsy specimens and the results of chemoradiotherapy in hypopharyngeal cancers. Fifty-seven patients with previously untreated squamous cell carcinoma of the hypopharynx were treated between March 2002 and December 2009. Most patients (75%) had stage III or IV disease. The chemotherapy consisted of cisplatin plus 5FU or S-1. A tumor dose of 50 Gy was usually administered to the primary tumor and regional lymph nodes. Doses of 10-20 Gy were usually added to the primary tumor with reduced fields after 50 Gy. The 5-year disease-free survival rate was 100% for patients in stage I, 90% in stage II, 64% in stage III and 50% in stage IV. In stages I-III, patients with a lower expression of Ku70 or XRCC4 tended to have better locoregional control. These results indicated that a lower expression of Ku70 or XRCC4 may be correlated with higher radiosensitivity. Two patients had distant metastasis alone, of which one had 0% expression of Ku70 and the other had 0% expression of Ku86. The absence of Ku70 or Ku86 expression indicates low DNA-PK activity. Low DNA-PK activity due to a low expression of Ku may result in the genetic alteration of cancer cells, leading to a higher tendency of distant metastasis. This finding suggests that proteins involved in NHEJ may have an impact on the treatment results of chemoradiotherapy in hypopharyngeal cancer.
Dietary supplementation of fish oil containing eicosapentaenoic acid (C20:5 n-3, EPA) and docosahexaenoic acid (C22:6 n-3, DHA) has been shown to exert protective effects on ischemic/reperfused hearts. We determined whether deprivation of fish oil from the diet paradoxically enhances susceptibility of cardiomyocytes to hypoxia/reoxygenation-induced injury and whether supplementation with either EPA or DHA overcomes such alterations. Rats were fed with fish-oil-rich (FOR) diet, fish-oil-deprived (FOD) diet alone, FOD diet with EPA (1 g/kg/day), or FOD diet with DHA (1 g/kg/day) for 4 weeks. The FOD diet reduced n-3 polyunsaturated fatty acids (PUFAs) and increased n-6 PUFAs such as linoleic (C18:2) and arachidonic acids (C20:4) in myocardial phospholipids. EPA or DHA supplementation increased its incorporation into phospholipid pools. Cardiomyocytes isolated by treatment with collagenase were subjected to 150 min of hypoxia and subsequent reoxygenation for 15 min. In the FOD diet group, the number of surviving rod-shaped cells after hypoxia and reoxygenation was smaller than that of the FOR group. Supplementation with EPA did not affect the number of rod-shaped cells, but attenuated reoxygenation-induced reduction in the number of square-shaped cells. In contrast, DHA supplementation did not afford any protection. The results suggest that deprivation of fish oil from dietary intake enhances the susceptibility of cardiomyocytes to hypoxic injury, and EPA, but not DHA, is capable of salvaging cardiomyocytes from hypoxia/reoxygenation-induced damage.
ABSTRACT-The present study was undertaken to determine whether aprindine, a class Ib antiarrythymic agent, exerts beneficial effects on ischemia/reperfusion-induced cardiac contractile dysfunction and meta bolic derangement. Isolated rat hearts were subjected to 35-min global ischemia, followed by 60-min reperfusion, and functional and metabolic alterations of the heart were determined with or without aprin dine-treatment. Ischemia induced a cessation of left ventricular developed pressure (LVDP), a rise in left ventricular end-diastolic pressure (LVEDP), and an increase in myocardial sodium content and a decrease in myocardial potassium content. When the hearts were reperfused, little recovery of LVDP and sustained rise in LVEDP and perfusion pressure were observed. Ischemia/reperfusion resulted in a release of ATP metabolites and creatine kinase from perfused hearts, an increase in myocardial sodium and calcium con tents, and a decrease in myocardial potassium and magnesium contents. Treatment of the perfused heart with either 10 or 30 uM aprindine for the last 3 min of pre-ischemia improved contractile recovery during reperfusion and suppressed changes in myocardial ion content during ischemia and reperfusion. Treatment with the agent also attenuated the release of ATP metabolites and creatine kinase from the heart. However, treatment with high concentrations of aprindine (70 and 100 uM) improved neither cardiac contractile dys function, myocardial ionic disturbance nor the release of ATP metabolites and creatine kinase during reperfusion. Two possible mechanisms for the cardioprotection by the agent have been suggested: suppres sion of transmembrane flux of substrates and enzymes, and prevention of accumulation of myocardial sodium during ischemia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.