An inductively coupled plasma source with an internal straight antenna was developed. By inserting an antenna into plasma, the induction of a strong electric field in the plasma and the efficient transmissions of power to plasma is enabled. However, there was a practical problem in that antenna sputtering occurred. Suppression of antenna sputtering and methods of insulating the antenna were studied. Consequently, it was found that sputtering impurities were reduced by covering the straight antenna with a quartz pipe. Furthermore, the amount of quartz pipe etching could be reduced to as little as 1/10th the original value. As a result of fabricating and evaluating the plasma source in which four straight antennas were arranged in parallel, electron density was determined to be as high as 1011 cm-3 even at a pressure as low as 4 mTorr. When the processing performance of the plasma source was evaluated, the ashing rate of the photoresist and the etching rate of the poly-Si were, respectively, 4.8 µm/min and 450 nm/min. These values are at practically applicable levels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.