An experiment was conducted to determine the effects of high vs low body condition scores (BCS) produced by restricted feeding on reproductive characteristics, hormonal secretion, and leptin concentrations in mares during the autumnal transition and winter anovulatory period. Mares with BCS of 6.5 to 8.0 were maintained on pasture and/or grass hay, and starting in September, were full fed or restricted to produce BCS of 7.5 to 8.5 (high) or 3.0 to 3.5 (low) by December. All but one mare with high BCS continued to ovulate or have follicular activity during the winter, whereas mares with low BCS went reproductively quiescent. Plasma leptin concentrations varied widely before the onset of restriction, even though all mares were in good body condition. During the experiment, leptin concentrations gradually decreased (P < 0.0001) over time in both groups, but were higher (P < 0.009) in mares with high vs low BCS after 6 wk of restriction, regardless of initial concentration. No differences (P > 0.1) between groups were detected for plasma concentrations of LH, FSH, TSH, GH, glucose, or insulin in samples collected weekly; in contrast, plasma prolactin concentrations were higher (P < 0.02) in mares with high BCS, but also decreased over time (P < 0.008). Plasma IGF-I concentrations tended (P = 0.1) to be greater in mares with high vs low BCS. The prolactin response to sulpiride injection on January 7 did not differ (P > 0.1) between groups. During 12 h of frequent blood sampling on January 12, LH concentrations were higher (P < 0.0001), whereas GH concentrations (P < 0.0001) and response to secretagogue (EP51389; P < 0.03) were lower in mares with high BCS. On January 19, the LH response to GnRH was higher (P < 0.02) in mares with high BCS; the prolactin response to TRH also was higher (P < 0.01) in mares with high BCS. In conclusion, nutrient restriction resulting in low BCS in mares resulted in a profound seasonal anovulatory period that was accompanied by lower leptin, IGF-I, and prolactin concentrations. All but one mare with high BCS continued to cycle throughout the winter or had significant follicular activity on the ovaries. Although leptin concentrations on average are very low in mares with low BCS and higher in well-fed mares, there is a wide variation in concentrations among well-fed mares, indicating that some other factor(s) may determine leptin concentrations under conditions of high BCS.
Mares that had previously been fed to attain body condition scores (BCS) of 7.5 to 8.5 (high) or 3.0 to 3.5 (low) were used to determine the interaction of BCS with the responses to 1) administration of equine somatotropin (eST) daily for 14 d beginning January 20 followed by administration of GnRH analog (GnRHa) daily for 21 d and 2) 4-d treatment with dexamethasone later in the spring when mares in low BCS had begun to ovulate. The majority of mares with high BCS continued to cycle throughout the winter, as evidenced by larger ovaries (P < 0.002), more corpora lutea (P < 0.05), greater progesterone concentrations during eST treatment (P < 0.04), and more (P < 0.05) large- and medium-sized follicles. Treatment with eST alone or in combination with GnRHa had no effect (P > 0.05) on ovarian activity or ovulation. Plasma leptin concentrations were greater (P < 0.002) in mares with high BCS; however, there was no effect (P > 0.10) of eST treatment. Plasma IGF-I concentrations were greater (P < 0.0001) in mares treated with eST compared with mares given vehicle, and mares with high BCS had greater IGF-I (P < 0.02) and LH concentrations (P < 0.02) than mares with low BCS. Plasma leptin concentrations in mares with high BCS were increased (P < 0.001) within 12 h of dexamethasone treatment; the leptin response (P < 0.001) in mares with low BCS was greatly reduced (P < 0.001) and transient. Glucose and insulin concentrations also increased (P < 0.0001) after dexamethasone treatment in both groups, and the magnitude of the response was greater (P < 0.0001) in mares with high BCS than in mares with low BCS. In summary,low BCS in mares was associated with a consistent seasonal anovulatory state that was affected little by eST and GnRHa administration. In contrast, all but one mare with high BCS continued to experience estrous cycles and(or) have abundant follicular activity on their ovaries. The IGF-I response to eST treatment was also reduced in mares with low BCS, as was the basal leptin concentration and leptin response to dexamethasone. Although low BCS and leptin concentrations were associated with inactive ovaries during winter and early spring, mares with low BCS eventually ovulated in April and May while leptin concentrations remained low.
Increased fearfulness has been associated with adrenocortical activation. Maternal corticosterone (B) treatment increases egg B, and elevated B in ovo enhances chick avoidance of humans. Quail selected for exaggerated (high stress, HS) rather than reduced (low stress, LS) plasma B response to stress are more fearful, and more B is found in HS hen eggs. Thus, we used tonic immobility (TI) and hole-in-the-wall box (HWB) emergence tests to assess fear in chicks hatched from eggs of LS and HS hens implanted with B or no B (CON). The number of inductions required to attain TI, latency to first alert head movement, and duration of TI were determined in one study and the latency until first vocalization (LATVOC), numbers of vocalizations (VOCS), proportions of chicks vocalizing, and the latencies to head (HE) and full-body (FE) emergence from a HWB were assessed in another. The LS chicks required less inductions (P < 0.0005) and had shorter latency to first alert head movement (P < 0.02) than HS chicks, although the duration of TI was unaffected by any of the treatments. During the acclimation period of the HWB tests, more (proportions of chicks vocalizing; P < 0.0001) HS chicks alarm-called sooner (LATVOC; P < 0.0001) and more often (VOCS; P < 0.0001) than did LS chicks, and, although maternal implant treatment did not affect LATVOC, progeny of B-implanted hens showed a tendency toward less (P < 0.07) VOCS than the CON. Chicks hatched from eggs of B-implant mothers also took longer to achieve HE (P < 0.06) and FE (P < 0.05) from the HWB than did their CON counterparts. Stress line, implantation treatment, and their interaction did not alter HE or FE responses. The data suggest that quail stress line genome may or may not be affecting certain fear and alarm responses in chicks via the same mechanism(s) that underlies how elevating maternal B increases egg levels of B that in turn alters the fear behavior of progeny.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.