Mammalian hairs are formed by differentiation and keratinization of cells produced in the epidermal matrix (Figs 3, 4). Using the rodent vibrissa follicle as a model, transplantation studies have shown that the dermal papilla, a discrete population of specialized fibroblasts, is of prime importance in the growth of hair. Papillae induce hair growth when implanted into follicles and can interact with skin epidermis to form new hair follicles. When grown in culture, papilla cells display singular morphological and behavioural characteristics compared with connective tissue cells from other skin sources. We report here that serially cultured adult papilla cells can induce the growth of hair when implanted into follicles which otherwise would not grow hairs. This finding presents an opportunity to characterize properties distinguishing the papilla cell population from other skin fibroblasts, and, more specifically, those which control hair growth. The eventual application of this work to human hair replacement techniques can also be envisaged.
In this study we investigated the capacity of the human hair follicle to regenerate a fiber-forming bulb after its amputation. We removed the bases from terminal follicles from a variety of sites and transplanted the follicles onto athymic mice, either still attached to a skin graft or as subcutaneous implants of individual follicles. External hair growth was observed on the skin grafts, and histology of the follicles revealed restoration of dermal papillae and follicle bulb structures. This result suggests that the capacity of hair follicles to regenerate their lower structures after removal, which was first demonstrated on whisker follicles, may be a general phenomenon. It emphasizes the importance of specific cellular subpopulations within the follicle and the role of dermal-epidermal interactions in adult follicle activities.
A series of experimental bioassays has shown that the dermal papilla of the adult rodent vibrissa hair follicle retains unique inductive properties. In view of the many phenotypic and functional differences between specific hair follicle types, and the growing interest in hair follicle biology and disease, it remains important to establish that the human hair follicle dermal papilla has equivalent capabilities. In this study we tested the ability of human hair follicle papillae to induce hair growth when implanted into transected, athymic mouse vibrissa follicles. The implanted papillae that interacted with mouse follicle epithelium created new fibre-producing follicle end bulbs. The origin of the papillae in the recombinant structures was confirmed using laser capture microdissection and human specific gender determination by PCR. The demonstration that intact adult human dermal papillae can induce hair growth has implications for molecular analysis of basic hair growth mechanisms, particularly since the study involved common epithelial-mesenchymal signalling and recognition properties across species. It also improves the prospects for a cell-based clinical approach to hair follicle disorders.
Retention of the capacity to induce the growth of hair by cultured adult rat vibrissa dermal papilla cells has been investigated. Small pellets of serially cultured papilla cells were implanted into the bases of the exposed follicular epidermis of amputated adult rat vibrissa follicles. Amputated follicles that received no cell implants or implants of cultured dorsal skin fibroblasts were used as controls. Over 50% of follicles implanted with cultured papilla cells in the passage range 1–3 grew hairs. In contrast none of the follicles that received late passage cells (range 6–15) produced hairs; and spontaneous regeneration of hair occurred in only 3% of the control follicles. These results demonstrate that cultured papilla cells of early passage numbers retain their ability to induce hair growth. Histological examination confirmed that the implanted papilla cells interacted with follicular epidermis to organize the development of new, hair-producing bulbs, each containing a discrete dermal papilla. An important observation was that aggregative behaviour leading to papilla formation was only manifested by early passage papilla cell implants. This persisting embryonic characteristic appears to be an essential functional component of papilla cell activity which operates to regulate the profound morphogenetic changes that occur during the hair growth cycle.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.