Mammalian hairs are formed by differentiation and keratinization of cells produced in the epidermal matrix (Figs 3, 4). Using the rodent vibrissa follicle as a model, transplantation studies have shown that the dermal papilla, a discrete population of specialized fibroblasts, is of prime importance in the growth of hair. Papillae induce hair growth when implanted into follicles and can interact with skin epidermis to form new hair follicles. When grown in culture, papilla cells display singular morphological and behavioural characteristics compared with connective tissue cells from other skin sources. We report here that serially cultured adult papilla cells can induce the growth of hair when implanted into follicles which otherwise would not grow hairs. This finding presents an opportunity to characterize properties distinguishing the papilla cell population from other skin fibroblasts, and, more specifically, those which control hair growth. The eventual application of this work to human hair replacement techniques can also be envisaged.
Alopecia areata (AA) is a nonscarring form of inflammatory hair loss in humans. AA-like hair loss has also been observed in other species. In recent years the Dundee experimental bald rat and the C3H/HeJ mouse have been put forward as models for human AA. AA in all species presents with a wide range of clinical features from focal, locally extensive, diffuse hair loss, to near universal alopecia. Histologically, all species have dystrophic anagen stage hair follicles associated with a peri- and intrafollicular inflammatory cell infiltrate. Autoantibodies directed against anagen stage hair follicle structures are a consistent finding. Observations on AA pathogenesis suggest nonhuman species can provide excellent models for the human disease. Ultimately, animal models will be used to determine the genetic basis of AA, potential endogenous and/or environmental trigger(s), mechanism(s) of disease initiation and progression, and allow rapid evaluation of new and improved disease treatments.
Vibrissa dermal papilla cells have been successfully grown and serially cultured and their early behaviour compared with cultured feather dermal papillae. Initially the vibrissa cells demonstrated singular characteristics, including poor spreading ability, before eventually forming a fibroblast-like population of cells.
In this study we investigated the capacity of the human hair follicle to regenerate a fiber-forming bulb after its amputation. We removed the bases from terminal follicles from a variety of sites and transplanted the follicles onto athymic mice, either still attached to a skin graft or as subcutaneous implants of individual follicles. External hair growth was observed on the skin grafts, and histology of the follicles revealed restoration of dermal papillae and follicle bulb structures. This result suggests that the capacity of hair follicles to regenerate their lower structures after removal, which was first demonstrated on whisker follicles, may be a general phenomenon. It emphasizes the importance of specific cellular subpopulations within the follicle and the role of dermal-epidermal interactions in adult follicle activities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.