Cereal Chem. 76(5):764-771Although amylose content is considered the most important determinant of cooked rice texture, this constituent falls short as a predictor, because cultivars with similar amylose contents may differ in textural properties. Thus, amylography is used as one of a battery of tests, in addition to measuring amylose content, to improve differentiation of cultivars. The purpose of our study was to determine how well amylography conducted with a Rapid Visco Analyser (RVA) serves as a predictor of cooked rice texture, alone and in combination, with amylose content. Textural properties of 87 samples representing short-, medium-, and long-grain rice cultivars were assessed by descriptive sensory and instrumental texture profile (TPA) analyses and related to RVA measurements.None of the cooked rice textural attributes, whether measured by descriptive analysis or TPA, were modeled by RVA with high accuracy (i.e., high r 2 ). Sensory texture attributes cohesiveness of mass, stickiness, and initial starchy coating and TPA attribute adhesiveness had the strongest correlations with RVA measurements. Setback explained most of the variance attributed to models describing these attributes; the strongest correlation was with cohesiveness of mass (r = 0.69; equivalent to coefficient of determination, r 2 = 0.47). Inclusion of amylose and protein contents in regression analyses did not strengthen models. Exclusion of samples that cook atypically, based on amylose content or gelatinization temperature types, slightly improved the accuracy of RVA measurements for predicting cooked rice texture.
Cereal Chem. 82(6):645-648Important rice grain quality characteristics such as percentage of chalky rice kernels are affected by both high and low night temperatures and by different day and day/night temperature combinations. High nighttime temperatures have also been suspected of reducing rice milling quality including head rice yields. Experiments to confirm or refute this have not been reported. A controlled climate experiment was conducted. Conditions in the chambers were identical except between 2400 and 0500 hours (midnight and 5 am). For those times, two temperature treatments were imposed: 1) 18°C (low temperature treatment) and 2) 24°C (high temperature treatment). Two cultivars were tested: LaGrue and Cypress. The high temperature treatment reduced head rice yields compared with the low temperature treatment. Grain widths were reduced for the high temperature treatment compared with the low temperature treatment. There was no effect of temperature on grain length or thickness. Amylopectin chain lengths 13-24 were increased by the high temperature treatment by ≈1%. Future research will focus on determining whether genetic variability exists among cultivars in their head rice yield response to high temperatures. After identifying a source of resistance to high temperature effects, this characteristic can be incorporated into rice cultivars. In addition, ways to reduce this effect, including biotechnological remedies, have the potential for increasing rice yield and quality.
We found evidence for linkage of BECTS to a region on chromosome 15q14. Either the alpha 7 AChR subunit gene or a closely linked gene are implicated in pedigrees with BECTS. The disorder is genetically heterogeneous. Surprisingly, the same chromosomal area has been reported to be linked to the phenotype in families with an auditory neurophysiologic deficit as well as in families with juvenile myoclonic epilepsy, another idiopathic but generalized epilepsy syndrome.
Rice; starch; RVA; amylopectin; digestibility.
Harvest index is a measure of success in partitioning assimilated photosynthate. An improvement of harvest index means an increase in the economic portion of the plant. Our objective was to identify genetic markers associated with harvest index traits using 203 O. sativa accessions. The phenotyping for 14 traits was conducted in both temperate (Arkansas) and subtropical (Texas) climates and the genotyping used 154 SSRs and an indel marker. Heading, plant height and weight, and panicle length had negative correlations, while seed set and grain weight/panicle had positive correlations with harvest index across both locations. Subsequent genetic diversity and population structure analyses identified five groups in this collection, which corresponded to their geographic origins. Model comparisons revealed that different dimensions of principal components analysis (PCA) affected harvest index traits for mapping accuracy, and kinship did not help. In total, 36 markers in Arkansas and 28 markers in Texas were identified to be significantly associated with harvest index traits. Seven and two markers were consistently associated with two or more harvest index correlated traits in Arkansas and Texas, respectively. Additionally, four markers were constitutively identified at both locations, while 32 and 24 markers were identified specifically in Arkansas and Texas, respectively. Allelic analysis of four constitutive markers demonstrated that allele 253 bp of RM431 had significantly greater effect on decreasing plant height, and 390 bp of RM24011 had the greatest effect on decreasing panicle length across both locations. Many of these identified markers are located either nearby or flanking the regions where the QTLs for harvest index have been reported. Thus, the results from this association mapping study complement and enrich the information from linkage-based QTL studies and will be the basis for improving harvest index directly and indirectly in rice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.