It is well known that a beam splitter (BS) can be used as a source of photon quantum entanglement. This is due to the fact that the statistics of photons changes at the output ports of the BS. Usually, quantum entanglement and photon statistics take into account the constancy of the reflection coefficient R or the transmission coefficient T of the BS, where $$R + T = 1$$
R
+
T
=
1
. It has recently been shown that if BS is used in the form of coupled waveguides, the coefficients R and T will depend on the photon frequencies. In this paper, it is shown that the quantum entanglement and statistics of photons at the output ports of a BS can change significantly if a BS is used in the form of coupled waveguides, where the coefficients R and T are frequency-dependent.
It is well known that the scattering of ultrashort pulses (USPs) of an electromagnetic field in the X-ray frequency range can be used in diffraction analysis. When such USPs are scattered by various polyatomic objects, a diffraction pattern appears from which the structure of the object can be determined. Today, there is a technical possibility of creating powerful USP sources and the analysis of the scattering spectra of such pulses is a high-precision instrument for studying the structure of matter. As a rule, such scattering occurs at a frequency close to the carrier frequency of the incident USP. In this work, it is shown that for high-power USPs, where the magnetic component of USPs cannot be neglected, scattering at the second harmonic appears. The scattering of USPs by the second harmonic has a characteristic diffraction pattern which can be used to judge the structure of the scattering object; combining the scattering spectra at the first and second harmonics therefore greatly enhances the diffraction analysis of matter. Scattering spectra at the first and second harmonics are shown for various polyatomic objects: examples considered are 2D and 3D materials such as graphene, carbon nanotubes, and hybrid structures consisting of nanotubes. The theory developed in this work can be applied to various multivolume objects and is quite simple for X-ray structural analysis, because it is based on analytical expressions.
The theory of scattering of ultrashort laser pulses (USP) is the basis of diffraction analysis of matter using modern USP sources. At present, the peculiarities of interaction of USP with complex structures are not well developed. In general, the research focuses on the features of the interaction of USP with simple systems, these are atoms and simple molecules. Here we present a theory of scattering of ultrashort laser pulses on molecules with a multi-atomic structure, taking into account the specifics of the interaction of USP with such a substance. The simplicity of the obtained expressions allows them to be used in diffraction analysis. As an example, the scattering spectra of deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) are presented. It is shown that the theory developed here is more general in the scattering theory and passes into the previously known one if we consider the duration of the USP to be sufficiently long.
The scattering of ultra-short X-ray pulses (USPs) is an important component of diffraction analysis of matter. Usually, the specific scattering of such USPs is not taken into account to determine the structure of a substance. Taking into account the specifics of scattering on complex structures will give more accurate results when deciphering complex structures. In this work, it is shown that when X-ray USPs are scattered on diamond with NV centers, it is necessary to take into account the pulse duration. The results obtained can be very different from the widely used theory of diffraction analysis, which confirms the need to take into account the specifics of USP scattering when diagnosing complex structures. It is shown that the scattering spectra are very sensitive to the concentration of NV-centres in the diamond structure, and this can be used in diffraction analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.