Accommodation space in the unconfined distal part of low‐gradient fluvial fans facilitates abundant floodplain deposition. Here, the development of crevasse splays plays a key role in the aggradation of alluvial ridges and subsequent river avulsion. This study presents an analysis of different stages in the evolution of crevasse splays based on observations made in the modern‐day Río Colorado dryland fluvial fan fringing the endorheic Altiplano Basin in Bolivia. A generic life cycle is proposed in which crevasse‐splay channels adjust towards a graded equilibrium profile with their lower‐lying distal termini acting as a local base level. Initial development is dominantly controlled by the outflow of floodwater, promoting erosion near the crevasse apex and deposition towards the splay fringes. When proximal incision advances to below the maximum level of floodplain inundation, return flow occurs during the waning stage of flooding. This floodwater reflux leads to a temporary repositioning of the local base level to the deeper trunk‐channel thalweg at the apex of the crevasse‐splay channels. The resultant decrease in the floodplainward gradient of these channels ultimately leads to backfilling and abandonment of the crevasse splay, leaving a subtle local elevation of the floodplain. Consecutive splays form an alluvial ridge through lateral amalgamation and subsequent vertical stacking, which is mirrored by the aggradation of their parent channel floor. As this alluvial ridge becomes increasingly perched above the surrounding floodplain, splay equilibration may cause incision of the levee crevasse down to or below its trunk channel thalweg, leading to an avulsion. The mechanisms proposed in this study are relevant to fluvial settings promoting progradational avulsions. The relatively rapid accumulation rate and high preservation potential of crevasse splays in this setting makes them an important constituent of the resultant fluvial stratigraphy, amongst which are hydrocarbon‐bearing successions. Copyright © 2018 John Wiley & Sons, Ltd.
Floodplain deposits are abundant in low-gradient dryland river systems, but their contribution to connected reservoir volumes has not yet been fully acknowledged due to their poor detectability with typical wireline log suites and relatively-lower reservoir quality. This study presents an analysis of stacked crevasse splays in the distal part of the Miocene Huesca fluvial fan (Ebro Basin, Spain). Vertical stacking of crevasse splays implies local aggradation of the active channel belt. Lateral amalgamation of crevasse splays created an elevated rim around their feeder channel, raising its bankfull height. Subsequent crevasse splays were deposited on top of their predecessors, creating sand-on-sand contact through incision and further raising the active channel belt. This process of channel-belt super-elevation repeated until an upstream avulsion occurred. Amalgamated crevasse splays constitute connected reservoir volumes up to ~10 7 m 3. Despite their lower reservoir quality, they effectively connect channel deposits in low net-to-gross fluvial stratigraphy, and hence, their contribution to producible volumes should be considered. Unswept intervals of amalgamated crevasse splays may constitute a secondary source of natural gas. Their interval thickness can serve *Revised manuscript with no changes marked Click here to view linked References as a proxy for feeder-channel dimensions, which can in turn be used to estimate the degree of stratigraphic connectivity.
Fluvial depositional architecture in an unconfined environment is governed by sediment dispersal across the alluvial plain through river‐path switching by avulsion. Documented inter‐avulsion periodicity from modern rivers ranges from tens to over a thousand years. In this study, a quantitative spatio‐temporal reconstruction of avulsion history is presented of the non‐vegetated and pristine modern Río Colorado dryland river system in the semi‐arid Altiplano Basin (Bolivia), based on the integrated analysis of satellite imagery and absolute age dating using optically stimulated luminescence, complemented with sedimentological and geomorphological ground‐truth data. This approach enables us to reconstruct the chronological order of channel belts of the Río Colorado, to determine avulsion recurrence time and inter‐avulsion periodicity, to identify mechanisms for flow path changes, and to present a morphodynamic model for the spatio‐temporal evolution of fluvial deposits in a semi‐arid environment. In a maximum timespan of 12.71 ± 1.5 ka, successive avulsions of the Río Colorado created a sheet of interconnected fluvial deposits, consisting of diverging and juxtaposed alluvial ridges that formed by sediment aggradation in point bars, crevasse splays, levees, and on the channel floor. The ridges show lateral onlap and amalgamation as the result of repeated avulsion and compensational stacking, whereby the river avoided the positive alluvial‐ridge relief of its precursors. The resultant morphology is fan‐shaped, convex‐up with a surface area of approximately 500 km2 and a maximum observed thickness of 3 m. The results show inter‐avulsion periods of the river of up to 1.28 ± 0.34 ka. A paucity in fluvial activity around 2 ka BP, and at present, is interpreted as the result of low river discharge related to long‐term dry periodicity in the El Niño Southern Oscillation circulation system. Each river path started as a low sinuous, single‐thread channel in a narrow belt, and in time increased its width and sinuosity by point‐bar expansion and rotation.
This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.