This paper presents a nonlinear square-root estimation scheme for brushless DC (BLDC) motors.The cubature Kalman filter (CKF) is the main estimation tool for the presented approach. The CKF is a recently proposed estimator for highly nonlinear systems and its efficacy has been verified on several applications. The square-root version of the CKF is preferred over the conventional CKF for real-time applications. Despite of having several advantages over other nonlinear filters, the CKF has not yet been explored for state estimation of electric drives in the electric drives community. In this paper, we present a square-root CKF for the speed and rotor position estimation of a highly nonlinear and high fidelity BLDC motor, these estimated speed and rotor position are then fed back to control the speed of the BLDC motor. The efficacy of the presented approach for low and high reference speeds, and in the presence of parametric uncertainties, is demonstrated by real-time experiments.
Control system design for inverter fed drives previously used the classical transfer function approach for single-input singleoutput (SISO) systems. Proportional plus Integral (PI) controllers were designed for individual control loops.It is found that the transient response of a PI controller is slow and is improved by pole placement through state feedback. However, the effective gains of the PI controller are substantially decreased as a function of the increase of motor speed. A control system is generally characterized by the hierarchy of the control loops, where the outer loop controls the inner loops. The inner loops are designed to execute progressively faster. The speed controller (PI controller) processes the speed error and generates the reference torque. In the inner loop, firstly a non-linear controller is designed for the system by which the system nonlinearity is canceled using state or exact feedback linearization. In addition, a linear state feedback control law based on pole placement technique including the integral of output error (IOE) is used in order to achieve zero steady state error with respect to reference current specification, while at the same time improving the dynamic response.The proposed scheme has been validated through extensive simulation using MATLAB.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.