TX 75083-3836, U.S.A., fax 01-972-952-9435.
AbstractCoalbed Methane (CBM) currently accounts for nearly 8 percent of U.S. annual gas production and approximately 12 percent of estimated total U.S. natural gas reserves. Coalbed methane proven reserves in the United States have increased from 3.7 Tcf in 1989 to 18.5 Tcf in 2002. This number is expected to increase even further as more resources are discovered and a better understanding of the existing resources is achieved. Appalachian Basin accounts about 10 percent of U.S. CBM resources. However, CBM production is very limited in the Appalachian Basin. The contribution of CBM to overall mix of natural gas sources in U.S. is expected to increase for next two decades. However, this cannot be achieved without substantial increase in CBM production in the Appalachian Basin. The problems causing the lag in development of CBM in the Appalachian Basin need to be overcome for CBM to reach its true potential in the U.S. energy equation.Gas production from CBM reservoirs is governed by complex interaction of single-phase gas diffusion through micro-pore system (primary porosity) and two-phase gas and water flow through cleat system (secondary porosity) that are coupled through desorption process. In order to effectively evaluate CBM resources, it necessary to utilize reservoir models that incorporate the unique flow and storage characteristics of CBM reservoirs. These models are often complicated to use, expensive, and time consuming. The typical gas producers in the Appalachian Basin suffer from the lack of scientific, userfriendly tools that can assist them in development of CBM resources. Therefore, it is necessary to develop tools that make it possible for typical (small to medium size) producers to seriously consider this important resource.This study presents a set of production type curves that would help the producers to predict the production from their CBM wells. As a consequence, the producers would be able to make better, more informed decisions regarding the CBM resources in the region. A reservoir model that incorporates the unique flow and storage characteristics of Coalbed Methane reservoirs was employed in this study to develop the type curves. The type curves provide a reliable tool to predict the production performance of CBM reservoirs both during dewatering and stable gas production phases. The application and issues concerning the production performance of CBM reservoirs are also discussed.
This paper summarizes the results of the modeling studies to determine the production performance of multiply fractured horizontal well completed in tight sand or Shale formations. A commercial reservoir simulator was utilized to model both single and a dual porosity reservoir with multiple layers. The results were utilized to investigate the flow regimes for horizontal wells with one or multi-stages of hydraulic fracturing stimulation. The impact of reservoir and fracture parameters on the flow regimes and the production performance was also investigated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.