Breast cancer is the most lethal type of cancer for all women worldwide. At the moment, there are no effective techniques for preventing or curing breast cancer, as the source of the disease is unclear. Early diagnosis is a highly successful means of detecting and managing breast cancer, and early identification may result in a greater likelihood of complete recovery. Mammography is the most effective method of detecting breast cancer early. Additionally, this instrument enables the detection of additional illnesses and may provide information about the nature of cancer, such as benign, malignant, or normal. This article discusses an evolutionary approach for classifying and detecting breast cancer that is based on machine learning and image processing. This model combines image preprocessing, feature extraction, feature selection, and machine learning techniques to aid in the classification and identification of skin diseases. To enhance the image’s quality, a geometric mean filter is used. AlexNet is used for extracting features. Feature selection is performed using the relief algorithm. For disease categorization and detection, the model makes use of the machine learning techniques such as least square support vector machine, KNN, random forest, and Naïve Bayes. The experimental investigation makes use of MIAS data collection. This proposed technology is advantageous for accurately identifying breast cancer disease using image analysis.
To study the static software defect detection system, based on the traditional static software defect detection system design, a new static software defect detection system design based on big data technology is proposed. The proposed method can optimize the distribution of test resources and improve the quality of software products by predicting the potential defect program modules and design the software and hardware of the static software defect detection system of big data technology. It is found that the traditional static software defect detection system design based on code source data takes a long time, averaging 65 h /day. However, the traditional static software defect detection system based on deep learning has a short detection time, averaging 35 h/day. In this article, the detection time of the static software defect detection system based on big data is shorter than that of the other two traditional system designs, with an average of 15 h/day. Because the system design adjusts the operating state of the system, it improves the accuracy of data operation. On the premise of data collection, the system inspection research is completed, which ensures the operational safety of software data, alleviates the contradiction between system and data to a high degree, improves the efficiency of system operation, reduces unnecessary operations, further shortens the time required for inspection, improves the system performance, and has higher research and operation value.
The Industrial Internet of Things (IIoT) has led to the growth and expansion of various new opportunities in the new Industrial Transformation. There have been notable challenges regarding the security of data and challenges related to privacy when collecting real-time and automatic data while observing applications in the industry. This paper proposes an Federated Transfer Learning for Authentication and Privacy Preservation Using Novel Supportive Twin Delayed DDPG (S-TD3) Algorithm for IIoT. In FT-Block (Federated transfer learning blockchain), several blockchains are applied to preserve privacy and security for all types of industrial applications. Additionally, by introducing the authentication mechanism based on transfer learning, blockchains can enhance the preservation and security standards for industrial applications. Specifically, Novel Supportive Twin Delayed DDPG trains the user model to authenticate specific regions. As it is considered one of the most open and scalable interacting platforms of information, it successfully helps in the positive transfer of different kinds of data between devices in more significant and local operations of the industry. It is mainly due to a single authentication factor, and the poor adaptation to regular increases in the number of users and different requirements that make the current authentication mechanism suffer a lot in IIoT. As a result, it has been very clearly observed that the given solutions are very useful.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.