The Industrial Internet of Things (IIoT) has led to the growth and expansion of various new opportunities in the new Industrial Transformation. There have been notable challenges regarding the security of data and challenges related to privacy when collecting real-time and automatic data while observing applications in the industry. This paper proposes an Federated Transfer Learning for Authentication and Privacy Preservation Using Novel Supportive Twin Delayed DDPG (S-TD3) Algorithm for IIoT. In FT-Block (Federated transfer learning blockchain), several blockchains are applied to preserve privacy and security for all types of industrial applications. Additionally, by introducing the authentication mechanism based on transfer learning, blockchains can enhance the preservation and security standards for industrial applications. Specifically, Novel Supportive Twin Delayed DDPG trains the user model to authenticate specific regions. As it is considered one of the most open and scalable interacting platforms of information, it successfully helps in the positive transfer of different kinds of data between devices in more significant and local operations of the industry. It is mainly due to a single authentication factor, and the poor adaptation to regular increases in the number of users and different requirements that make the current authentication mechanism suffer a lot in IIoT. As a result, it has been very clearly observed that the given solutions are very useful.
A blockchain is an advanced technology that can power over a decentralized network. The authors bring it up to design the autonomous transaction system for e-commerce applications; because of the dramatic increase in IoT devices, communication between physical things is enabled. This brings more efficiency and accuracy, which benefits the outsiders while human interaction reduces. There is a big challenge in data storage after payment in the e-commerce application. Blockchain presents an appropriate platform for the distributed data storage; it also protects the data from outsiders. The authors create blocks that check and record each transaction that took place in the e-commerce application. Blockchain is going to protect the user's privacy from outsiders/banks that are being violated. The authors deliver this research in this paper in terms of the method with detailed design and full implementation. The system captures the user data, processes it, and gives a visual representation of the processed data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.