It is a widely accepted axiom that localized concentration of mechanical stress and large flexural deformation is closely related to the calcification and tissue degeneration in bioprosthetic heart valves (BHV). In order to investigate the complex BHV deformations and stress distributions throughout the cardiac cycle, it is necessary to perform an accurate dynamic analysis with a morphologically and physiologically realistic material specification for the leaflets. We have developed a stress resultant shell model for BHV leaflets incorporating a Fung-elastic constitutive model for in-plane and bending responses separately. Validation studies were performed by comparing the finite element predicted displacement and strain measures with the experimentally measured data under physiological pressure loads. Computed regions of stress concentration and large flexural deformation during the opening and closing phases of the cardiac cycle correlated with previously reported regions of calcification and/or mechanical damage on BHV leaflets. It is expected that the developed experimental and computational methodology will aid in the understanding of the complex dynamic behavior of native and bioprosthetic valves and in the development of tissue engineered valve substitutes.
Since the first successful implantation of a prosthetic heart valve four decades ago, over 50 different designs have been developed including both mechanical and bioprosthetic valves. Today, the most widely implanted design is the mechanical bileaflet, with over 170,000 implants worldwide each year. Several different mechanical valves are currently available and many of them have good bulk forward flow hemodynamics, with lower transvalvular pressure drops, larger effective orifice areas, and fewer regions of forward flow stasis than their earlier-generation counterparts such as the ball-and-cage and tilting-disc valves. However, mechanical valve implants suffer from complications resulting from thrombus deposition and patients implanted with these valves need to be under long-term anti-coagulant therapy. In general, blood thinners are not needed with bioprosthetic implants, but tissue valves suffer from structural failure with, an average life-time of 10-12 years, before replacement is needed. Flow-induced stresses on the formed elements in blood have been implicated in thrombus initiation within the mechanical valve prostheses. Regions of stress concentration on the leaflets during the complex motion of the leaflets have been implicated with structural failure of the leaflets with bioprosthetic valves. In vivo and in vitro experimental studies have yielded valuable information on the relationship between hemodynamic stresses and the problems associated with the implants. More recently, Computational Fluid Dynamics (CFD) has emerged as a promising tool, which, alongside experimentation, can yield insights of unprecedented detail into the hemodynamics of prosthetic heart valves. For CFD to realize its full potential, however, it must rely on numerical techniques that can handle the enormous geometrical complexities of prosthetic devices with spatial and temporal resolution sufficiently high to accurately capture all hemodynamically relevant scales of motion. Such algorithms do not exist today and their development should be a major research priority. For CFD to further gain the confidence of valve designers and medical practitioners it must also undergo comprehensive validation with experimental data. Such validation requires the use of high-resolution flow measuring tools and techniques and the integration of experimental studies with CFD modeling.
The wall shear stress induced by the leaflet motion during the valve-closing phase has been implicated with thrombus initiation with prosthetic valves. Detailed flow dynamic analysis in the vicinity of the leaflets and the housing during the valve-closure phase is of interest in understanding this relationship. A three-dimensional unsteady flow analysis past bileaflet valve prosthesis in the mitral position is presented incorporating a fluid-structure interaction algorithm for leaflet motion during the valve-closing phase. Arbitrary Lagrangian-Eulerian method is employed for incorporating the leaflet motion. The forces exerted by the fluid on the leaflets are computed and applied to the leaflet equation of motion to predict the leaflet position. Relatively large velocities are computed in the valve clearance region between the valve housing and the leaflet edge with the resulting relatively large wall shear stresses at the leaflet edge during the impact-rebound duration. Negative pressure transients are computed on the surface of the leaflets on the atrial side of the valve, with larger magnitudes at the leaflet edge during the closing and rebound as well. Vortical flow development is observed on the inflow (atrial) side during the valve impact-rebound phase in a location central to the leaflet and away from the clearance region where cavitation bubbles have been visualized in previously reported experimental studies.
The relationships among vascular geometry, hemodynamics, and plaque development in the coronary arteries are complex and not yet well understood. This paper reports a methodology for the quantitative analysis of in vivo coronary morphology and hemodynamics, with particular emphasis placed on the critical issues of image segmentation and the automated classification of disease severity. We were motivated by the observation that plaque more often developed at the inner curvature of a vessel, presumably due to the relatively lower wall shear stress at these locations. The presented studies are based on our validated methodology for the three-dimensional fusion of intravascular ultrasound (IVUS) and X-ray angiography, introducing a novel approach for IVUS segmentation that incorporates a robust, knowledge-based cost function and a fully optimal, threedimensional segmentation algorithm. Our first study shows that circumferential plaque distribution depends on local vessel curvature in the majority of vessels. The second study analyzes the correlation between plaque distribution and wall shear stress in a set of 48 in vivo vessel segments. The results were conclusive for both studies, with a stronger correlation of circumferential plaque thickness with local curvature than with wall shear stress. The inverse relationship between local wall shear stress and plaque thickness was significantly more pronounced (p < 0.025) in vessel cross sections exhibiting compensatory enlargement (positive remodeling) without luminal narrowing than when the full spectrum of disease severity was considered. The inverse relationship was no longer observed in vessels where less than 35% of vessel cross sections remained without luminal narrowing. The findings of this study confirm, in vivo, the hypothesis that relatively lower wall shear stress is associated with early plaque development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.