Recurrent shifts in Holocene climate define the range of natural variability to which the signatures of human interference with the Earth system should be compared.Characterization of Holocene climate variability at the global scale becomes increasingly accessible due to a growing amount of paleoclimate records for the last 9 000-11 000 years. Here, we integrate 124 proxy time series of different types (e.g., δ 18 O, lithic composition) and apply a modified Lomb-Scargle spectral analysis. After bootstrapping the data in moving time windows we observe an increased probability for generation or loss of periodic modes at the mid-Holocene. Spatial autocorrelation of spectral changes robustly reveals that this (in)activation of modes was organized in regional clusters of subcontinental size. Within these clusters, changes in spectral properties are unexpectedly homogeneous, despite different underlying climatolog- Preprint submitted to Elsevier A C C E P T E D M A N U S C R I P T ACCEPTED MANUSCRIPTical variables. Oscillations in the climate system were amplified especially at the upwelling areas and dampened in the North Atlantic. We cross-checked the spectral analysis by counting events in the time series and tested against possible dating errors in individual records or against an overestimation of singular events. A combination of different mechanisms may have affected the coupling intensity between climate subsystems, turning these more or less prone to oscillations.
Abstract. We integrate 130 globally distributed proxy time series to refine the understanding of climate variability during the Holocene. Cyclic anomalies and temporal trends in periodicity from the Lower to the Upper Holocene are extracted by combining Lomb-Scargle Fourier-transformed spectra with bootstrapping. Results were cross-checked by counting events in the time series. Main outcomes are: First, the propensity of the climate system to fluctuations is a region specific property. Many records of adjacent sites reveal a similar change in variability although they belong to different proxy types (e.g., δ18O, lithic composition). Secondly, at most sites, irreversible change occured in the Mid-Holocene. We suggest that altered ocean circulation together with slightly modified coupling intensity between regional climate subsystems around the 5.5 kyr BP event (termination of the African Humid Period) were responsible for the shift. Fluctuations especially intensified along a pan-American corridor. This may have led to an unequal crisis probability for early human civilizations in the Old and New World. Our study did not produce evidence for millennial scale cyclicity in some solar activity proxies for the Upper Holocene, nor for a privileged role of the prominent 250, 550, 900 and 1450 yr cycles. This lack of global periodicities corroborates the regional character of climate variability.
This paper addresses the problem of model complexity commonly arising in constructing and using process-based models with intricate interactions. Apart from complex process details the dynamic behavior of such systems is often limited to a discrete number of typical states. Thus, models reproducing the system's processes in all details are often too complex and over-parameterized. In order to reduce simulation times and to get a better impression of the important mechanisms, simplified formulations are desirable. In this work a data adaptive model reduction scheme that automatically builds simple models from complex ones is proposed. The method can be applied to the transformation and reduction of systems of ordinary differential equations. It consists of a multistep approach using a low dimensional projection of the model data followed by a Genetic Programming/Genetic Algorithm hybrid to evolve new model systems. As the resulting models again consist of differential equations, their process-based interpretation in terms of new state variables becomes possible. Transformations of two simple models with oscillatory dynamics, simulating a mathematical pendulum and predator-prey interactions respectively, serve as introductory examples of the method's application. The resulting equations of force indicate the predator-prey system's equivalence to a nonlinear oscillator. In contrast to the simple pendulum it contains driving and damping forces that produce a stable limit cycle.
In the late 19th century, Charles Egeson, a map compiler at the Sydney Observatory, carried out some of the earliest research on climatic cycles, linking them to about 33-year cycles in solar activity, and predicted that a devastating drought would strike Australia at the turn of the 20th century. Eduard Brückner and William J. S. Lockyer, who, like Egeson, found similar cycles, with notable exceptions, are also, like the map compiler, mostly forgotten. But the transtridecadal cycles are important in human physiology, economics and other affairs and are particularly pertinent to ongoing discusions of climate change. Egeson’s publication of daily weather reports preceded those officially recorded. Their publication led to clashes with his superiors and his personal life was marked by run-ins with the law and, possibly, an implied, but not proven, confinement in an insane asylum and premature death. We here track what little is known of Egeson’s life and of his bucking of the conventional scientific wisdom of his time with tragic results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.