We incorporate dielectric indium tin oxide nanocrystals into the hot-spot of gold nanogap-antennas and perform third harmonic spectroscopy on these hybrid nanostructure arrays. The combined system shows a 2-fold increase of the radiated third harmonic intensity when compared to bare gold antennas. In order to identify the origin of the enhanced nonlinear response we perform finite element simulations of the nanostructures, which are in excellent agreement with our measurements. We find that the third harmonic signal enhancement is mainly related to changes in the linear optical properties of the plasmonic antenna resonances when the ITO nanocrystals are incorporated. Furthermore, the dominant source of the third harmonic is found to be located in the gold volume of the plasmonic antennas.
Pulsed illumination of lithium–niobate crystals with green light excites electrons from deep traps into the intrinsic defect NbLi5+ (Nb on Li site in the valence state 5+) and creates NbLi4+ centers (small polarons). The electrons trapped in this more shallow center increase the light absorption in the red and near infrared. The dark decay of the polaron concentration is observed by monitoring the relaxation of these absorption changes. Iron-doped lithium–niobate crystals with different concentrations of NbLi are investigated for various illumination conditions and temperatures. The relaxation shows a stretched-exponential behavior which is in disagreement with the predictions of the standard rate-equation-based model. The observed lifetimes of the polarons range from tens of nanoseconds to some milliseconds. Computer simulations reveal that all results can be explained considering distance-dependent excitation and recombination rates, i.e., the lifetime of an individual polaron depends on the distance to the next available deep electron trap. Based on the new insights, tailoring of lithium–niobate crystals for nonvolatile holographic storage becomes possible.
Ferroelectric domain walls are interfaces between areas of a material that exhibits different directions of spontaneous polarization. The properties of domain walls can be very different from those of the undisturbed material. Metallic-like conductivity of charged domain walls (CDWs) in nominally insulating ferroelectrics was predicted in 1973 and detected recently. This important effect is still in its infancy: The electric currents are still smaller than expected, the access to the conductivity at CDWs is hampered by contact barriers, and stability is low because of sophisticated domain structures or proximity of the Curie point. Here, we report on large, accessible, and stable conductivity at CDWs in lithium niobate (LN) crystals – a vital material for photonics. Our results mark a breakthrough: Increase of conductivity at CDWs by more than 13 orders of magnitude compared to that of the bulk, access to the effect via ohmic and diode-like contacts, and high stability for temperatures T ≤ 70 °C are demonstrated. A promising and now realistic prospect is to combine CDW functionalities with linear and nonlinear optical phenomena. Our findings allow new generations of adaptive-optical elements, of electrically controlled integrated-optical chips for quantum photonics, and of advanced LN-semiconductor hybrid optoelectronic devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.