Wavelike thermal transport in solids, referred to as second sound, has until now been an exotic phenomenon limited to a handful of materials at low temperatures. This has restricted interest in its occurrence and in its potential applications. Through time-resolved optical measurements of thermal transport on 5-20 μm length scales in graphite, we have made direct observations of second sound at temperatures above 100 K. The results are in qualitative agreement with ab initio calculations that predict wavelike phonon hydrodynamics on ~ 1-μm length scale up to almost room temperature. The results suggest an important role of second sound in microscale transient heat transport in two-dimensional and layered materials in a wide temperature range.
One Sentence Summary:Wavelike thermal transport is observed at above 100 K and predicted at even higher temperatures, suggesting prospects for unique microscale cooling kinetics in two-dimensional and layered materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.