No abstract
Striking stratigraphic and sedimentological similarities between the Early Proterozoic Huronian Supergroup of the Canadian Shield and the Snowy Pass Supergroup of Wyoming suggest that they were deposited in a single, broad, epicratonic basin developed atop a large Archean continent that included the Superior and Wyoming geological provinces. Breakup of the continent after the 2.2 Ga intrusion of widespread gabbro sheets and dykes resulted in the separation of the Archean Superior and Wyoming cratons and their Early Proterozoic covers. These crustal fragments were subsequently reassembled during Early Proterozoic (~1.85 Ga) orogenesis, the end result being the present 2000 km separation of the Huronian and Snowy Pass supergroups and their Archean basements.
Integrated paleomagnetic and U–Pb geochronologic studies have been conducted to establish the paleomagnetic directions and ages of Early Proterozoic tholeiitic dykes of northeast trend in the southern Superior Province, previously referred to collectively as Preissac dykes. It is demonstrated that they are readily separated on the basis of paleomagnetism into subsets, referred to as the Biscotasing and Senneterre swarms. In addition a pair of unnamed dykes may be associated with the north-and northwest-trending Matachewan swarm farther west.Biscotasing dykes have a down-west magnetization of single polarity with a corresponding paleopole at 27.8°N, 136.7°W (dm = 12.3° and dp = 9.4°). Senneterre dykes carry an up-north (or occasionally down-south) direction with corresponding paleopole at 15.3°S, 75.7°W (dm = 7.0°, dp = 4.4°). The Senneterre direction is indistinguishable from the primary N1 remanence direction that dominates the magnetization of Nipissing sills of the Southern Province. Paleomagnetic field tests described herein or in earlier studies indicate that Biscotasing and Senneterre directions are primary and, hence, that two ages of intrusion are involved, with the age of Senneterre dykes coinciding with the intrusion of most Nipissing sills. U–Pb dating of baddeleyite conducted at a paleomagnetic sampling site yields an age of 2214.3 ± 12.4 Ma for the Senneterre swarm, indistinguishable from the age of 2217.2 ± 4 Ma reported from an N1 Nipissing sill site in another study. A U–Pb age on baddeleyite and zircon of 2166.7 ± 1.4 Ma was obtained from a paleomagnetic site in the Biscotasing swarm. The primary paleopoles for the Senneterre, Nipissing, and Biscotasing rocks define a direction of polar wander opposite to that of the most widely used polar wander paths for North America for this period, suggesting that these paths should no longer be used.
In the first collaborative study of paleomagnetism and precise U-Pb geochronology in the Minto block of the Superior Province, mafic dyke swarms with three widely divergent paleomagnetic signatures and isotopic ages have been identified. The 2505 ± 2 Ma Ptarmigan dykes trend north to northeast and have a virtual geomagnetic pole at 42°S, 220°E, similar to that of 2473-2446 Ma Matachewan dykes of the southern Superior Province. The ca. 2230 Ma Maguire dykes trend west to northwest and yield a paleopole at 9°S, 267°E, similar to those for 2216+8-4 Ma Senneterre dykes and 2217-2210 Ma Nipissing sills of the southern Superior and Southern provinces, respectively. The 2209 ± 1 Ma Klotz dykes trend west-northwest, but do not carry a consistent magnetization direction. Finally, 1998 ± 2 Ma Minto dykes of west-northwest to northwest trend, identical in age to the 1998 Ma ± 2 Ma Purtuniq ophiolite of the Cape Smith Belt, have a paleopole at 38°N, 174°E. The similarity of paleopoles for the ca. 2.23-2.21 Ga Maguire dykes of the Minto block, Senneterre dykes of the southern Superior, and Nipissing sills of the Southern Province demonstrates that these regions were in their present relative latitudes and orientations at that time. Likewise, the similarity of the Ptarmigan virtual geomagnetic pole and the Matachewan paleopole suggests little relative latitudinal movement or rotation of the two regions since ca. 2.5 Ga. The Maguire, Senneterre, and Klotz dykes form a roughly radiating pattern and may represent one quadrant of a giant radiating dyke swarm centred southeast of Ungava Bay, whose focus marks the location of a mantle plume responsible for ca. 2.22 Ga breakup along the eastern margin of the Superior Province. If so, the coeval Nipissing sills that intrude sedimentary rocks of the Huronian Supergroup of the Southern Province may have been fed laterally by Senneterre dykes from the Ungava plume centre.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.