1. Stimulation of the sensorimotor cortex was found to excite and/or inhibit nociceptive spinothalamic tract cells. Thirteen wide dynamic range cells were inhibited by cortical stimulation, 6 were excited and 14 were both excited and inhibited. Four of six high-threshold cells were excited and one was inhibited. 2. Intermediate (200 ms) or long (2 s) duration conditioning trains were effective in reducing responses of spinothalamic cells evoked by noxious mechanical or thermal stimuli and by A- and C-fiber volleys in the sural nerve. Preferential inhibition of low-threshold responses with little or no effect on high-threshold discharges was observed in some cases. 3. Inhibitory actions were obtained primarily from stimulation of the SI sensory cortex and area 5, while excitation or excitation followed by inhibition was the dominant effect from motor cortex (area 4). Spinothalamic cells were also excited by stimulation of the medullary pyramid. 4. In eight animals extensive mapping of the sensorimotor cortex showed that for a given cell, stimulation of the sensory cortex produced inhibition while stimulation of motor cortex resulted in excitation. 5. The average latency of inhibition from sensory cortex was 29.8 +/- 10 ms, while the average latency of excitation from motor cortex was significantly shorter, 13.5 +/- 9 ms. The shortest latencies for excitation from pyramidal stimulation in the cases evaluated ranged from 2 to 9 ms. 6. Spinal cord lesions were made in five animals to determine the descending pathway(s) mediating corticofugal effects. Cortical and pyramidal effects were eliminated or considerably reduced by lesions involving the dorsal part of the lateral funiculus. This observation combined with latency data suggest that the corticospinal tract may be involved in the mediation of cortical excitation, while both pyramidal and extrapyramidal pathways are likely to be involved in cortical inhibition.
1. The responses of spinothalamic tract cells in the lumbosacral spinal cords of anesthetized monkeys were examined following electrical stimulation of the sural nerve or the application of noxious thermal and mechanical stimuli to the skin on the lateral aspect of the foot. 2. The spinothalamic tract neurons were classified as wide dynamic range (WDR), high-threshold (HT), or low-threshold (LT) cells on the basis of their responses to mechanical stimuli. 3. All of the WDR and HT spinothalamic tract cells tested responded to volleys in A- and C-fibers. However, strong C-fiber responses were more common in HT than in WDR cells. 4. The responses atributed to C-fibers were graded with the size of the C-fiber volley. The latencies of the responses attributed to C-fibers indicated that the fastest afferents involved had a mean conduction velocity of 0.9 m/s. The responses remained after anodal blockade of conduction in A-fibers. 5. Temporal summation of the responses of spinothalamic tract cells was demonstrated both to brief trains of stimuli at 33 Hz and to single stimuli repeated at 1- to 2-s intervals. The latter phenomenon is often called "windup." 6. The responses of several spinothalamic tract cells to noxious heat pulses could still be elicited during anodal blockade of conduction in A-fibers. Similarly, it was possible to demonstrate an excitatory action of noxious mechanical stimuli despite interference with conduction in A-fibers by anodal current. 7. The cells investigated were located either in the marginal zone or in the layers of the dorsal horn equivalent to Rexed's laminae IV-VI in the cat. The cells were generally activated antidromically from the caudal part of the ventral posterior lateral nucleus of the thalamus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.