A simplified scheme for the provision of antiprotons at 100 MeV/c based on fast extraction is described. The scheme uses the existing p production target area and the modified Antiproton Collector Ring in their current location. The physics programme is largely based on capturing and storing antiprotons in Penning traps for the production and spectroscopy of antihydrogen. The machine modifications necessary to deliver batches of 1 u 10 7 p /min at 100 MeV/c are described. Details of the machine layout and the experimental area in the existing AAC Hall are given.
A simplified scheme for the provision of antiprotons at 100 MeV/c based on fast extraction is described. The scheme uses the existing p production target area and the modified Antiproton Collector Ring in their current location. The physics programme is largely based on capturing and storing antiprotons in Penning traps for the production and spectroscopy of antihydrogen. The machine modifications necessary to deliver batches of 1 u 10 7 p /min at 100 MeV/c are described. Details of the machine layout and the experimental area in the existing AAC Hall are given.
It is shown that LeBlanc's hopping electron model, despite being originally based on faulty data, still gives good agreement with apparent charge mobilities derived from nanosecond breakdown formative time-lags. Thus this model has not been proved invalid, as has been assumed, although direct supporting evidence is still required.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.