High ambient temperature has been reported to increase oxidative stress by increasing lipid peroxidation and decreasing antioxidant defence in transition dairy cows. It is also known to cause an increase in plasma cortisol levels in goats, European hedgehog and human volunteers. High levels of glucocorticoids have been reported to decrease blood glutathione and erythrocyte superoxide dismutase activity in rats. Although institutional animal houses in research laboratories of developed countries maintain animals in air-conditioned rooms at constant temperature, the same is not true of animal houses in the developing countries especially those belonging to smaller institutions and this could affect the results of the experiments being conducted on these animals. The present research study was done to assess the effects of seasonal variations on the status of erythrocyte oxidative damage, antioxidant defence and plasma cortisol levels in adult female Wistar rats. Rats were kept in their home cages and were left in non-air-conditioned procedure rooms in two different seasons, Hot season (March-May) and Cool season (June to September). Erythrocyte Thiobarbituric acid reactive substances and plasma cortisol levels were significantly increased in rats exposed to high ambient temperature and humidity of the hot season as compared to the rats of the cool season. Erythrocyte reduced glutathione levels, erythrocyte glutathione peroxidase and superoxide dismutase activities were significantly decreased in the hot season group of rats. The results of our experiments showed that exposure of adult female Wistar rats to high ambient temperature and humidity of the hot season increases neuroendocrine stress, oxidative stress and decreases antioxidant defence in them.
The space within the great pyramid and its smaller replicas is believed to have an antistress effect. Research has shown that the energy field within the pyramid can protect the hippocampal neurons of mice from stress-induced atrophy and also reduce neuroendocrine stress, oxidative stress and increase antioxidant defence in rats. In this study, we have, for the first time, attempted to study the antistress effects of pyramid exposure on the status of cortisol level, oxidative damage and antioxidant status in rats during chronic restraint stress. Adult female Wistar rats were divided into four groups as follows: normal controls (NC) housed in home cage and left in the laboratory; restrained rats (with three subgroups) subject to chronic restraint stress by placing in a wire mesh restrainer for 6 h per day for 14 days, the restrained controls (RC) having their restrainers kept in the laboratory; restrained pyramid rats (RP) being kept in the pyramid; and restrained square box rats (RS) in the square box during the period of restraint stress everyday. Erythrocyte malondialdehyde (MDA) and plasma cortisol levels were significantly increased and erythrocyte-reduced glutathione (GSH) levels, erythrocyte glutathione peroxidase (GSH-Px) and superoxide dismutase (SOD) activities were significantly decreased in RC and RS rats as compared to NC. However, these parameters were maintained to near normal levels in RP rats which showed significantly decreased erythrocyte MDA and plasma cortisol and significantly increased erythrocyte GSH levels, erythrocyte GSH-Px and SOD activities when compared with RS rats. The results showed that housing in pyramid counteracts neuroendocrine and oxidative stress caused by chronic restraint in rats.
Young adult (60 day old) Wistar rats of either sex were orally intubated with 50 mg/kg body weight and 100 mg/kg body weight of aqueous root extract of Clitoria ternatea (CTR) for 30 days, along with age-matched saline controls. These rats were then subjected to passive avoidance tests and the results from these studies showed a significant increase in passive avoidance learning and retention. Subsequent to the passive avoidance tests, these rats were killed by decapitation. The amygdala was processed for Golgi staining and the stained neurons were traced using a camera lucida and analysed. The results showed a significant increase in dendritic intersections, branching points and dendritic processes arising from the soma of amygdaloid neurons in CTR treated rats especially in the 100 mg/kg group of rats, compared with age-matched saline controls. This improved dendritic arborization of amygdaloid neurons correlates with the increased passive avoidance learning and memory in the CTR treated rats as reported earlier. The results suggest that Clitoria ternatea aqueous root extract enhances memory by increasing the functional growth of neurons of the amygdala.
Tissue repair and regeneration in the central nervous system (CNS) remains a serious medical problem. CNS diseases such as traumatic and neurological brain injuries have a high mortality and disability rate, thereby bringing a considerable amount of economic burden to society and families. How to treat traumatic and neurological brain injuries has always been a serious issue faced by neurosurgeons. The global incidence of traumatic and neurological brain injuries has gradually increased and become a global challenge. Thymosin β4 (Tβ4) is the main G-actin variant molecule in eukaryotic cells. During the development of the CNS, Tβ4 regulates neurogenesis, tangential expansion, tissue growth, and cerebral hemisphere folding. In addition, Tβ4 has anti-apoptotic and anti-inflammatory properties. It promotes angiogenesis, wound healing, stem/progenitor cell differentiation, and other characteristics of cell migration and survival, providing a scientific basis for the repair and regeneration of injured nerve tissue. This review provides evidence to support the role of Tβ4 in the protection and repair of nervous tissue in CNS diseases, especially with the potential to control brain inflammatory processes, and thus open up new therapeutic applications for a series of neurodegenerative diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.