Giant knotweeds of the genus (syn.)-, and a hybrid of them, -are noxious invasive plants in Europe and North America. is a traditional East Asian (Japan and China) drug (). Recently, it has been included in European Pharmacopoeia as one of the traditional Chinese medicinal herbs. In this study, a reversed-phase high performance liquid chromatography method with diode array detector and time-of-flight mass spectrometry was developed and validated for the profiling of rhizomes from European invasive populations and purchased in China. Twenty-five compounds were identified, mainly stilbenes, anthraquinones, flavan-3-ols, and phenylpropanoid esters. Tatariside B, hydropiperoside, vanicoside C, a new compound (3,6-O-di--coumaroyl)--fructofuranosyl-(2 → 1)-(2'-O-acetyl-6'-O-feruloyl)--glucopyranoside) were reported for the first time in these raw materials. Six compounds from three phytochemical classes-stilbenes: piceid and resveratrol; anthraquinones: emodin and physcion; hydroxycinnamic sucrose esters: vanicosides A and B-were quantified using the validated method. from China contained twice as many stilbenoids than samples from Poland (piceid 14.83 mg/g dm vs. 7.45 mg/g and resveratrol 1.29 mg/g vs. 0.65 mg/g). rhizomes contained lower quantities of anthraquinones and no detectable stilbenes, which together with higher amounts of hydroxycinnamic glycosides makes it easily distinguishable from the other two. The phytochemical profile of was intermediate between the two parent species.
European Pharmacopoeia accepts two equivalent species Solidago canadensis L. and S. gigantea Aiton as goldenrod (Solidaginis herba). We compared phytochemical profile of both species from invasive populations in Poland. Further, we compared in vitro antimutagenic and antioxidant activities of solvent extracts from aerial (AP) and underground parts (UP). In S. gigantea, flavonoid profile was dominated by quercetin glycosides, with quercitrin as the major compound. In S. canadensis, quercetin and kaempferol rutinosides were two major constituents. Caffeoylquinic acids (CQAs) were less diverse with 5-CQA as a main compound. In UP, over 20 putative diterpenoids were detected, mostly unidentified. Several CQAs were present in higher amounts than in AP. Antioxidant and antimutagenic activities were different between species and organs, with the strongest inhibition of lipid peroxidation by Et O and AcOEt fractions from AP of both species (IC 13.33 - 16.89 μg/mL) and BuOH fraction from S. gigantea UP (IC = 13.32 μg/mL). Chemical mutagenesis was completely inhibited by non-polar fractions, but oxidative mutagenesis was inhibited up to 35% only by S. canadensis. No clear relationship was found between chemical profiles and antimutagenic activity. In conclusion, both species have diverse activity and their phytochemical profiles should be considered in quality evaluation. UP of these weeds can also provide potential chemopreventive substances for further studies.
In the first part of this study we extracted, isolated, and identified the main diterpenoid constituents from the roots of a Central Asian medicinal and ornamental plant-Perovskia atriplicifolia Benth. Eight major nor-abietanoid pigments were obtained using NP silica gel column chromatography and preparative RP-HPLC: cryptotanshinone, 1-hydroxycryptotanhinone, miltirone, 1-oxomiltirone, tanshinone IIa, 1,2 didehydrotanshinone IIa, 1,2 didehydromiltirone, the nonquinone diterpenoid-arucadiol, as well as rosmarinic acid as a main phenolic compound. Secondly, we used the obtained compounds for fast and selective determination of the main diterpenes present in P. atriplicifolia root extract. After extraction with n-hexane, the quantitative analysis was carried out by LC-MS/MS with a triple quadrupole (qQq) mass detector without any prior clean-up step. Identification of the diterpenes was confirmed by multiple reaction monitoring (MRM) using the most representative transitions from the precursor ions, while the most sensitive transitions were used for quantification in a 19-minute run. Most of the isolated and analyzed compounds had not been previously reported from this species. This easily cultivated plant is a promising source of several pharmacologically valuable abietanoid diterpenoids.
SummaryWe analysed the effect of the invasive perennial plant Heracleum sosnowskyi on soil nematode communities and diversity, and plant species composition, by comparing invaded and non-invaded (control) areas in natural conditions. Invasion of H. sosnowskyi caused significant shifts in plant species composition, which subsequently modified nematode assemblages. Stress-sensitive omnivores, fungivores and root-biomass-dependent obligate plant parasites best reflected changes in soil nematode communities under the influence of H. sosnowskyi invasion. The negative effect of H. sosnowskyi was most evident on Aphelenchus, Tylencholaimus, Geocenamus, Helicotylenchus, Pratylenchus, Tylenchorhynchus and Aporcelaimellus. Our results indicate that significant changes in the herbaceous layer after H. sosnowskyi invasion in ecosystems where H. sosnowskyi eventually became dominant impacted soil nematode communities but did not affect nematode diversity. This was in contrast to the habitats where a solitary plant of H. sosnowskyi grew and no significant changes in nematode communities were observed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.