Elevations from the Mars Orbiter Laser Altimeter (MOLA) have been used to construct a precise topographic map of the martian north polar region. The northern ice cap has a maximum elevation of 3 kilometers above its surroundings but lies within a 5-kilometer-deep hemispheric depression that is contiguous with the area into which most outflow channels emptied. Polar cap topography displays evidence of modification by ablation, flow, and wind and is consistent with a primarily H2O composition. Correlation of topography with images suggests that the cap was more spatially extensive in the past. The cap volume of 1.2 x 10(6) to 1.7 x 10(6) cubic kilometers is about half that of the Greenland ice cap. Clouds observed over the polar cap are likely composed of CO2 that condensed out of the atmosphere during northern hemisphere winter. Many clouds exhibit dynamical structure likely caused by the interaction of propagating wave fronts with surface topography.
[1] We describe the distribution and concentration of the largest Martian gypsum deposit discovered to date by the Mars Express OMEGA (Observatoire pour le Mineralogie, l'Eau, les Glaces et l'Activité) imaging spectrometer, its relationship to the late Amazonian-aged north polar dunes in which it is found, and its likely origin. Gypsum has not been discovered anywhere within the north polar region outside of the Olympia Undae dune sea. In the areas of highest gypsum a concentration, 35% pure gypsum grains of a few tens of micrometers in size, mixed with 65% millimeter-sized gypsum grains containing, dark, spectrally featureless inclusions best fit the OMEGA observations. The gypsum-rich dunes contain no significant average albedo, temperature, or morphological anomalies. We propose that water emanating from nearby channels, carved during melting of the polar layered deposits, infiltrated the eastern end of the polar dune sea, percolating through the dunes. Deposits of gypsum resulted from a combination of direct, in situ alteration of sulfide-and high-calcium-pyroxene-bearing dunes and from formation of evaporitic gypsum crystals in the pore spaces of these dunes. This gypsum deposit formed in a unique local environment and is disconnected from sulfate-forming events elsewhere on Mars which are thought to have occurred much earlier, during the late Noachian and Hesperian, by various means. Sulfates have not been discovered in any other collection of dunes on Mars.
Infornnation about obtaining reprints of this article or about obtaining permission to reproduce this article in whole or in part can be found at:Science (print ISSN 0036-8075; online ISSN 1095-9203) is published weekly, except the last week in December, by the
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.