We present a complete set of all valid SWS full-scan 2.4-45.4 lm spectra processed and renormalized in as uniform a manner as possible. The processing produces a single spectrum for each observation from the 288 individual spectral segments, which are the most processed form available from the ISO archive. The spectra, and the programs used to create them, are available to the community on-line.
We have used the Infrared Spectrograph (IRS) on the Spitzer Space Telescope to obtain spectra of HD 100764, an apparently single carbon star with a circumstellar disk. The spectrum shows emission features from polycyclic aromatic hydrocarbons (PAHs) that are shifted to longer wavelengths than normally seen, as characteristic of "class C" systems in the classification scheme of Peeters et al. All seven of the known class C PAH sources are illuminated by radiation fields that are cooler than those which typically excite PAH emission features. The observed wavelength shifts are consistent with hydrocarbon mixtures containing both aromatic and aliphatic bonds. We propose that the class C PAH spectra are distinctive because the carbonaceous material has not been subjected to a strong ultraviolet radiation field, allowing relatively fragile aliphatic materials to survive.
We have observed a sample of 36 objects in the Small Magellanic Cloud (SMC) with the Infrared Spectrometer on the Spitzer Space Telescope. Nineteen of these sources are carbon stars. An examination of the near-and mid-infrared photometry shows that the carbon-rich and oxygen-rich dust sources follow two easily separated sequences. A comparison of the spectra of the 19 carbon stars in the SMC to spectra from the Infrared Space Observatory (ISO) of carbon stars in the Galaxy reveals significant differences. The absorption bands at 7.5 and 13.7 m due to C 2 H 2 are stronger in the SMC sample, and the SiC dust emission feature at 11.3 m is weaker. Our measurements of the MgS dust emission feature at 26-30 m are less conclusive, but this feature appears to be weaker in the SMC sample as well. All of these results are consistent with the lower metallicity in the SMC. The lower abundance of SiC grains in the SMC may result in less efficient carbon-rich dust production, which could explain the excess C 2 H 2 gas seen in the spectra. The sources in the SMC with the strongest SiC dust emission tend to have redder infrared colors than the other sources in the sample, which implies more amorphous carbon, and they also tend to show stronger MgS dust emission. The weakest SiC emission features tend to be shifted to the blue; these spectra may arise from low-density shells with large SiC grains.
We observed a sample of evolved stars in the Large and Small Magellanic Clouds (LMC and SMC) with the Infrared Spectrograph on the Spitzer Space Telescope. Comparing samples from the SMC, LMC, and the Galaxy reveals that the dust production rate depends on metallicity for oxygen-rich stars, but carbon stars with similar pulsation properties produce similar quantities of dust, regardless of their initial metallicity. Other properties of the oxygen-rich stars also depend on metallicity. As the metallicity decreases, the fraction of naked (i.e., dust-free) stars increases, and among the naked stars, the strength of the 8 m absorption band from SiO decreases. Our sample includes several massive stars in the LMC with long pulsation periods that produce significant amounts of dust, probably because they are young and relatively metal-rich. Little alumina dust is seen in circumstellar shells in the SMC and LMC, unlike in Galactic samples. Three oxygen-rich sources also show emission from magnesium-rich crystalline silicates. Many also show an emission feature at 14 m. The one S star in our sample shows a newly detected emission feature centered at 13.5 m. At lower metallicity, carbon stars with similar amounts of amorphous carbon in their shells have stronger absorption from molecular acetylene (C 2 H 2 ) and weaker emission from SiC and MgS dust, as discovered in previous studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.