The Isaac Newton Telescope (INT) Photometric Hα Survey of the Northern Galactic Plane (IPHAS) is a 1800‐deg2 CCD survey of the northern Milky Way spanning the latitude range −5° < b < + 5° and reaching down to r′≃ 20 (10σ). Representative observations and an assessment of point‐source data from IPHAS, now underway, are presented. The data obtained are Wide Field Camera images in the Hα narrow‐band, and Sloan r′ and i′ broad‐band filters. We simulate IPHAS (r′−Hα, r′−i′) point‐source colours using a spectrophotometric library of stellar spectra and available filter transmission profiles: this defines the expected colour properties of (i) solar metallicity stars, without Hα emission, and (ii) emission‐line stars. Comparisons with observations of fields in Aquila show that the simulations of normal star colours reproduce the observations well for all spectral types earlier than M. A further comparison between colours synthesized from long‐slit flux‐calibrated spectra and IPHAS photometry for six objects in a Taurus field confirms the reliability of the pipeline calibration. Spectroscopic follow‐up of a field in Cepheus shows that sources lying above the main stellar locus in the (r′− Hα, r′−i′) plane are confirmed to be emission‐line objects with very few failures. In this same field, examples of Hα deficit objects (a white dwarf and a carbon star) are shown to be readily distinguished by their IPHAS colours. The role IPHAS can play in studies of spatially resolved northern Galactic nebulae is discussed briefly and illustrated by a continuum‐subtracted mosaic image of Shajn 147 (a supernova remnant, 3° in diameter). The final catalogue of IPHAS point sources will contain photometry on about 80 million objects. Used on its own, or in combination with near‐infrared photometric catalogues, IPHAS is a major resource for the study of stellar populations making up the disc of the Milky Way. The eventual yield of new northern emission‐line objects from IPHAS is likely to be an order of magnitude increase on the number already known.
We report far-infrared and submillimeter observations of supernova 1987A, the star whose explosion was observed on 23 February 1987 in the Large Magellanic Cloud, a galaxy located 160,000 light years away. The observations reveal the presence of a population of cold dust grains radiating with a temperature of about 17 to 23 kelvin at a rate of about 220 times the luminosity of the Sun. The intensity and spectral energy distribution of the emission suggest a dust mass of about 0.4 to 0.7 times the mass of the Sun. The radiation must originate from the supernova ejecta and requires the efficient precipitation of all refractory material into dust. Our observations imply that supernovae can produce the large dust masses detected in young galaxies at very high redshifts.
We present the first results from the science demonstration phase for the Hi-GAL survey, the Herschel key program that will map the inner Galactic plane of the Milky Way in 5 bands. We outline our data reduction strategy and present some science highlights on the two observed 2 • × 2 • tiles approximately centered at l = 30 • and l = 59 • . The two regions are extremely rich in intense and highly structured extended emission which shows a widespread organization in filaments. Source SEDs can be built for hundreds of objects in the two fields, and physical parameters can be extracted, for a good fraction of them where the distance could be estimated. The compact sources (which we will call cores' in the following) are found for the most part to be associated with the filaments, and the relationship to the local beam-averaged column density of the filament itself shows that a core seems to appear when a threshold around A V ∼ 1 is exceeded for the regions in the l = 59 • field; a A V value between 5 and 10 is found for the l = 30 • field, likely due to the relatively higher distances of the sources. This outlines an exciting scenario where diffuse clouds first collapse into filaments, which later fragment to cores where the column density has reached a critical level. In spite of core L/M ratios being well in excess of a few for many sources, we find core surface densities between 0.03 and 0.5 g cm −2 . Our results are in good agreement with recent MHD numerical simulations of filaments forming from large-scale converging flows.
We report on an analysis of the gas and dust budget in the interstellar medium (ISM) of the Large Magellanic Cloud (LMC). Recent observations from the Spitzer Space Telescope enable us to study the mid‐infrared dust excess of asymptotic giant branch (AGB) stars in the LMC. This is the first time we can quantitatively assess the gas and dust input from AGB stars over a complete galaxy, fully based on observations. The integrated mass‐loss rate over all intermediate and high mass‐loss rate carbon‐rich AGB candidates in the LMC is 8.5 × 10−3 M⊙ yr−1, up to 2.1 × 10−2 M⊙ yr−1. This number could be increased up to 2.7 × 10−2 M⊙ yr−1 if oxygen‐rich stars are included. This is overall consistent with theoretical expectations, considering the star formation rate (SFR) when these low‐ and intermediate‐mass stars where formed, and the initial mass functions. AGB stars are one of the most important gas sources in the LMC, with supernovae (SNe), which produces about 2–4 × 10−2 M⊙ yr−1. At the moment, the SFR exceeds the gas feedback from AGB stars and SNe in the LMC, and the current star formation depends on gas already present in the ISM. This suggests that as the gas in the ISM is exhausted, the SFR will eventually decline in the LMC, unless gas is supplied externally. Our estimates suggest ‘a missing dust‐mass problem’ in the LMC, which is similarly found in high‐z galaxies: the accumulated dust mass from AGB stars and possibly SNe over the dust lifetime (400–800 Myr) is significant less than the dust mass in the ISM. Another dust source is required, possibly related to star‐forming regions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.