The NGA-West2 project is a large multidisciplinary, multi-year research program on the Next Generation Attenuation (NGA) models for shallow crustal earthquakes in active tectonic regions. The research project has been coordinated by the Pacific Earthquake Engineering Research Center (PEER), with extensive technical interactions among many individuals and organizations. NGA-West2 addresses several key issues in ground-motion seismic hazard, including updating the NGA database for a magnitude range of 3.0–7.9; updating NGA ground-motion prediction equations (GMPEs) for the “average” horizontal component; scaling response spectra for damping values other than 5%; quantifying the effects of directivity and directionality for horizontal ground motion; resolving discrepancies between the NGA and the National Earthquake Hazards Reduction Program (NEHRP) site amplification factors; analysis of epistemic uncertainty for NGA GMPEs; and developing GMPEs for vertical ground motion. This paper presents an overview of the NGA-West2 research program and its subprojects.
Online Material: Movie of wave propagation, GPS coseismic displacements, rupture velocity, waveform comparisons, geologic and 3D seismic structure, and moment rate functions.
Previous studies have found a systematic difference between short-period ground motions from aftershocks and main shocks, but have not used a consistent methodology for classifying earthquakes in strong motion data sets. A method for unambiguously classifying earthquakes in strong motion data sets is developed. The classification is based on the Gardner and Knopoff time window, but with a distance window based on a new distance metric, CRJB, defined as the shortest horizontal distance between the centroid of the surface projection of the potential aftershock rupture plane and the surface projection of the main shock rupture plane. Class 2 earthquakes are earthquakes that have a CRJB distance less than a selected limit and within a time window appropriate for aftershocks. All other earthquakes are classified as Class 1. For maximum CRJB of 0 km and 40 km, 11% and 36% of the earthquakes in the NGA-West2 database are Class 2 events, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.