Purpose To describe sources of interindividual variability in bevacizumab disposition in pediatric patients and explore associations among bevacizumab pharmacokinetics and clinical wound healing outcomes. Experimental Design Prior to tumor resection, three doses of bevacizumab (15 mg/kg) were administered to patients (median age 12.2 years) enrolled on a multi-institutional osteosarcoma trial. Serial sampling for bevacizumab pharmacokinetics was obtained from 27 patients. A population pharmacokinetic model was fit to the data, and patient demographics and clinical chemistry values were systematically tested as predictive covariates on model parameters. Associations between bevacizumab exposure and wound healing status were evaluated by logistic regression. Results Bevacizumab concentration-time data were adequately described by a two-compartment model. Pharmacokinetic parameter estimates were similar to those previously reported in adults with a long median (range) terminal half-life of 12.2 days (8.6 to 32.4 days) and a volume of distribution indicating confinement primarily to the vascular space,49.1 mL/kg (27.1 to 68.3 mL/kg). Body composition was a key determinant of bevacizumab exposure as body mass index percentile was significantly (p<0.05) correlated to body-weight normalized clearance and volume of distribution. Furthermore, bevacizumab exposure prior to primary tumor resection was associated with increased risk of major wound healing complications after surgery (p<0.05). Conclusion A population pharmacokinetic model for bevacizumab was developed which demonstrated that variability in bevacizumab exposure using weight-based dosing is related to body composition. Bevacizumab dosage scaling using ideal body weight would provide an improved dosing approach in children by minimizing pharmacokinetic variability and reducing likelihood of major wound healing complications.
Despite significant improvement in outcomes for patients with hematological malignancies and solid tumors over the past 10 years, patients with primary or metastatic brain tumors continue to have a poor prognosis. A primary reason for this is the inability of many chemotherapeutic drugs to penetrate into the brain and brain tumors at concentrations high enough to exert an antitumor effect due to unique barriers and efflux transporters. Several studies have been published recently examining the CNS pharmacokinetics of various anticancer drugs in patients with primary and metastatic brain tumors. To summarize recent advances in the field, this review will critically present studies published within the last 9 years examining brain and cerebrospinal fluid penetration of clinically available anticancer agents for patients with CNS tumors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.