Nowadays, an inhalation of naturally generated aerosols has again become a widely practiced method of balneological treatment of various respiratory diseases. The aim of this study was to characterize the microbial aerosol of subterraneotherapy chambers at the Bochnia Salt Mine Health Resort in southern Poland. The measurements were carried out using a 6-stage Andersen impactor over a period of 1 year in both indoor (i.e., two subterranean chambers, where curative treatments took place) and outdoor air. The maximum bacterial aerosol concentrations in the chambers reached 11,688 cfu/m3. In such interiors, a high-performance method of microbial contaminant reduction need be introduced, especially when large groups of young patients are medically cured. Respecting fungal aerosol, its average indoor concentration (88 cfu/m3) was significantly lower than outdoor level (538 cfu/m3). It confirms that ventilation system provides efficient barrier against this type of biologically active propagules. Among identified micro-organisms, the most prevalent indoors were Gram-positive cocci, which constituted up to 80 % of airborne microflora. As highly adapted to the diverse environments of its human host (skin, respiratory tract), they can be easily released in high quantities into the air. The number of people introduced into such subterranean chambers should be in some way limited. The analysis of microclimate parameters revealed that temperature and relative humidity influenced significantly the level of bacterial aerosol only. Hence, a constant control of these parameters should be scrupulously superintended at this type of subterranean premises.
Municipal wastes collected in landfills are a significant source of air contamination and frequently characterize by elevated concentrations of different fungi. Posing a serious health threat to landfill workers and local residents, the fungal aerosol has to be monitored with respect to its quantity and quality. In this study, concentrations of airborne fungi, their particle size distribution, species composition and the presence of cytotoxic strains of Aspergillus fumigatus were assessed in different sites within the landfill area. The quantitative and qualitative changes in the fungal aerosol were determined with respect to a season and landfill activity level (i.e. exploitation or standstill periods). Within the landfill area, particular sites were grouped with regard to airborne fungi concentrations and similarities in species composition. The qualitative analysis indicated that 43 species were shared during both sampling times, and only nine species were characteristic for the standstill period. Among fungal isolates, 21 strains of A. fumigatus revealed cytotoxic activity expressed at different levels, depending on the fungal extract concentrations used in the MTT assay. The results suggested that exposure (especially in summer) to small airborne particles, containing distinct species, may occur not only in the active sector but also in close vicinity to the landfill. Hence, microbial monitoring of the landfill and surrounding area should be carried out taking into account both quantitative aspect supplemented by size distribution analysis and qualitative features, especially of those strains possessing cytotoxic activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.