Graphene oxide membranes show exceptional molecular permeation properties, with a promise for many applications. However, their use in ion sieving and desalination technologies is limited by a permeation cutoff of 9 Å, which is larger than hydrated ion diameters for common salts. The cutoff is determined by the interlayer spacing d 13.5 Å, typical for graphene oxide laminates that swell in water. Achieving smaller d for the laminates immersed in water has proved to be a challenge. Here we describe how to control d by physical confinement and achieve accurate and tuneable ion sieving. Membranes with d from 9.8 Å to 6.4 Å are demonstrated, providing the sieve size smaller than typical ions' hydrated diameters. In this regime, ion permeation is found to be thermally activated with energy barriers of 10-100 kJ/mol depending on d. Importantly, permeation rates decrease exponentially with decreasing the sieve size but water transport is weakly affected (by a factor of <2). The latter is attributed to a low barrier for water molecules entry and large slip lengths inside graphene capillaries. Building on these findings, we demonstrate a simple scalable method to obtain graphene-based membranes with limited swelling, which exhibit 97% rejection for NaCl.Selectively permeable membranes with sub-nm pores attract strong interest due to analogies with biological membranes and potential applications in water filtration, molecular separation and desalination [1][2][3][4][5][6][7][8] . Nanopores with sizes comparable to, or smaller than, the diameter D of hydrated ions are predicted to show enhanced ion selectivity 7,9-12 because of dehydration required to pass through such atomic-scale sieves. Despite extensive research on ion dehydration effects 3,7,9-13 , experimental investigation of the ion sieving controlled by dehydration has been limited because of difficulties in fabricating uniform membranes with well-defined sub-nm pores. The realisation of membranes with dehydration-assisted selectivity would be a significant step forward. So far, research into novel membranes has mostly focused on improving the water flux rather than ion selectivity. On the other hand, modelling of practically relevant filtration processes shows that an increase in water permeation rates above the rates currently achieved (2-3 L/m 2 ×h×bar) would not contribute greatly to the overall efficiency of desalination 8,14,15 . Alternative approaches based on higher water-ion selectivity may open new possibilities for improving filtration technologies, as the performance of state-of-the-art membranes is currently limited by the solution-diffusion mechanism, in which water molecules dissolve in the membrane material and then diffuses across the membrane 8 . Recently, carbon nanomaterials including carbon nanotubes (CNT)
Nanometre-scale pores and capillaries have long been studied because of their importance in many natural phenomena and their use in numerous applications. A more recent development is the ability to fabricate artificial capillaries with nanometre dimensions, which has enabled new research on molecular transport and led to the emergence of nanofluidics. But surface roughness in particular makes it challenging to produce capillaries with precisely controlled dimensions at this spatial scale. Here we report the fabrication of narrow and smooth capillaries through van der Waals assembly, with atomically flat sheets at the top and bottom separated by spacers made of two-dimensional crystals with a precisely controlled number of layers. We use graphene and its multilayers as archetypal two-dimensional materials to demonstrate this technology, which produces structures that can be viewed as if individual atomic planes had been removed from a bulk crystal to leave behind flat voids of a height chosen with atomic-scale precision. Water transport through the channels, ranging in height from one to several dozen atomic planes, is characterized by unexpectedly fast flow (up to 1 metre per second) that we attribute to high capillary pressures (about 1,000 bar) and large slip lengths. For channels that accommodate only a few layers of water, the flow exhibits a marked enhancement that we associate with an increased structural order in nanoconfined water. Our work opens up an avenue to making capillaries and cavities with sizes tunable to ångström precision, and with permeation properties further controlled through a wide choice of atomically flat materials available for channel walls.
In the field of nanofluidics, it has been an ultimate but seemingly distant goal to controllably fabricate capillaries with dimensions approaching the size of small ions and water molecules. We report ion transport through ultimately narrow slits that are fabricated by effectively removing a single atomic plane from a bulk crystal. The atomically flat angstrom-scale slits exhibit little surface charge, allowing elucidation of the role of steric effects. We find that ions with hydrated diameters larger than the slit size can still permeate through, albeit with reduced mobility. The confinement also leads to a notable asymmetry between anions and cations of the same diameter. Our results provide a platform for studying the effects of angstrom-scale confinement, which is important for the development of nanofluidics, molecular separation, and other nanoscale technologies.
Contact angle goniometry is conducted for epitaxial graphene on SiC. Although only a single layer of epitaxial graphene exists on SiC, the contact angle drastically changes from 69 degrees on SiC substrates to 92 degrees on graphene. It is found that there is no thickness dependence of the contact angle from the measurements of single-, bi-, and multilayer graphene and highly ordered pyrolytic graphite (HOPG). After graphene is treated with oxygen plasma, the level of damage is investigated by Raman spectroscopy and the correlation between the level of disorder and wettability is reported. By using a low-power oxygen plasma treatment, the wettability of graphene is improved without additional damage, which can solve the adhesion issues involved in the fabrication of graphene devices.
Biological membranes allow permeation of water molecules but can reject even smallest ions. Behind these exquisite separation properties are protein channels with angstrom-scale constrictions (e.g., aquaporins). Despite recent progress in creating nanoscale pores and capillaries, they still remain distinctly larger than protein channels. We report capillaries made by effectively extracting one atomic plane from bulk crystals, which leaves a two-dimensional slit of a few Å in height. Water moves through these capillaries with little resistance whereas no permeation could be detected even for such small ions as Na + and Cl -. Only protons can diffuse through monolayer water inside the capillaries. The observations improve our understanding of molecular transport at the atomic scale and suggest further ways to replicate the impressive machinery of living cells.It has long been an aspirational goal to create artificial structures and devices with separation properties similar to those of biological membranes 1-5 . The latter utilize a number of separation mechanisms but it is believed that angstrom-scale constrictions within protein channels 6,7 play a key role in steric (size) exclusion of ions with the smallest hydration diameters D H 7 Å, typically present in biofluids and seawater 8,9 . Such constrictions are particularly difficult to replicate artificially because of the lack of fabrication tools capable to operate with such precision and, also, because the surface roughness of materials is typically much larger than the required angstrom scale 1 . Nonetheless, several artificial systems with nanometer and sub-nanometer dimensions were recently demonstrated, including narrow carbon and boron-nitride nanotubes 5,10,11 , graphene oxide laminates 12,13 and atomic-scale pores in graphene and MoS 2 monolayers 3,4,14 . The resulting devices exhibited high selectivity with respect to certain groups of ions (for example, they blocked large ions but allowed small ones 12,13 or rejected anions but allowed cations and vice versa 2,3,5 ). Most recently, van der Waals assembly of two-dimensional (2D) crystals 15 was used to make slit-like channels of several Å in height 16,17 . They were atomically smooth and chemically inert and exhibited little ( 10 -4 C cm -2 ) surface charge 17 . The channels allowed fast water permeation 16 and blocked large ions with a complete cutoff for diameters larger than 10 Å (ref. 17 ). Small ions (for example, those in seawater with D H of 7 Å) still permeated through those channels with little hindrance, showing that an angstrom-scale confinement comparable to that in aquaporins 6,7 is essential for steric exclusion of small-diameter ions. In this report, we describe 2D channels with the height h of about 3.4 Å (ref. 18), which are twice smaller than any hydrated ion (smallest ions are K + and Clwith D H 6.6 Å) 8,19 but sufficiently large to allow water inside (effective size of water molecules is 2.8 Å). The achieved confinement matches the size of protein constrictions in biological ...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.