A series of poly(hexamethylene 2,5-furanodicarboxylate)-block-poly(tetrahydrofuran) (PHF-b-F-pTHF) copolymers were synthesized using a two-stage procedure, employing transesterification and polycondensation. The content of pTHF flexible segments varied from 25 to 75 wt.%. 1H nuclear magnetic resonance (NMR) and Fourier transformed infrared spectroscopy (FTIR) analyses were applied to confirm the molecular structure of the materials. Differential scanning calorimetry (DSC), dynamic mechanical measurements (DMTA), and X-ray diffraction (XRD) allowed characterizing the supramolecular structure of the synthesized copolymers. SEM analysis was applied to show the differences in the block copolymers’ morphologies concerning their chemical structure. The influence of the number of flexible segments in the copolymers on the phase transition temperatures, thermal properties, as well as the thermo-oxidative and thermal stability was analyzed. TGA analysis, along with tensile tests (static and cyclic), confirmed the utilitarian performance of the synthesized bio-based materials. It was found that an increase in the amount of pTHF caused the increase of both number-average and weight-average molecular weights and intrinsic viscosities, and at the same time causing the shift of the values of phase transition temperatures toward lower ones. Besides, PHF-b-F-pTHF containing 75 wt.% of F-pTHF units was proved to be a promising thermoplastic shape memory polymer (SMP) with a switching temperature of 20 °C.
The paper presents the current volume of international production and global markets of carbon fiber reinforced polymer composites, also regarding the potential development trends. Examples were provided on how to effectively recycle carbon fiber reinforced polymer composites. Legally binding legislation in the EU on polymer composite recycling was given.
A series of aliphatic-aromatic copolyesters based on poly(butylene terephthalate) (PBT) and poly(lactic acid) (PLA) have been synthesized by means of a novel reactive blending procedure coupled with polycondensation in melt. The obtained copolymers were further compared with PBT and PLA homopolymers and PBT/PLA non-compatibilized physical blends in order to investigate the effect of transesterification reactions on the structural, morphological, thermal and mechanical performance. Properties of the obtained materials have been found strictly dependent on the preparation process and blend/copolymer composition. The PBT/PLA physical blends appeared as highly crystalline, phase separated systems that exhibit brittle behavior. On the other hand, the applied method of reactive blending enhanced interfacial adhesion and promoted the arrangement of PBT and PLA in blocks of different lengths. Although the PBT-b-PLA copolyesters were found to be miscible in amorphous phase, the phase separation that has arisen from PBT crystalline domains occurs. Along with an increase in PLA weight fraction in copolymers, the length of aromatic sequences decreased which in turn resulted in shifting the values of melting temperatures (T m) toward lower ones and decreased the degree of crystallinity (x c). Moreover, PBT-b-PLA copolymer with 30 wt% of PLA units has been demonstrated as a promising thermoplastic shape memory polymer (SMP) with a switching temperature of 35°C.
The paper presents some examples of new technological solutions for the recovery and re-use of recycled carbon fiber in automotive and railway industries, as well as in aviation and wind turbine constructions. The new technologies of fiber recovery that are described can enable the mass-scale use of recycled carbon fiber in the future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.