Abstract. Oil sands comprise 30% of the world's oil reserves and the crude oil reserves in Canada's oil sands deposits are second only to Saudi Arabia. The extraction and processing of oil sands is much more challenging than for light sweet crude oils because of the high viscosity of the bitumen contained within the oil sands and because the bitumen is mixed with sand and contains chemical impurities such as sulphur. Despite these challenges, the importance of oil sands is increasing in the energy market. To our best knowledge this is the first peer-reviewed study to characterize volatile organic compounds (VOCs) emitted from Alberta's oil sands mining sites. We present high-precision gas chromatography measurements of 76 speciated C 2 -C 10 VOCs (alkanes, alkenes, alkynes, cycloalkanes, aromatics, monoterpenes, oxygenated hydrocarbons, halocarbons and sulphur compounds) in 17 boundary layer air samples collected over surface mining operations in northeast Alberta on 10 July 2008, using the NASA DC-8 airborne laboratory as a research platform. In addition to the VOCs, we present simultaneous measurements of CO 2 , CH 4 , CO, NO, NO 2 , NO y , O 3 and SO 2 , which were measured in situ aboard the DC-8.Carbon dioxide, CH 4 , CO, NO, NO 2 , NO y , SO 2 and 53 VOCs (e.g., non-methane hydrocarbons, halocarbons, sulphur species) showed clear statistical enhancements (1.1-397×) over the oil sands compared to local background valCorrespondence to: I. J. Simpson (isimpson@uci.edu) ues and, with the exception of CO, were greater over the oil sands than at any other time during the flight. Twenty halocarbons (e.g., CFCs, HFCs, halons, brominated species) either were not enhanced or were minimally enhanced (<10%) over the oil sands. Ozone levels remained low because of titration by NO, and three VOCs (propyne, furan, MTBE) remained below their 3 pptv detection limit throughout the flight. Based on their correlations with one another, the compounds emitted by the oil sands industry fell into two groups: (1) evaporative emissions from the oil sands and its products and/or from the diluent used to lower the viscosity of the extracted bitumen (i.e., C 4 -C 9 alkanes, C 5 -C 6 cycloalkanes, C 6 -C 8 aromatics), together with CO; and (2) emissions associated with the mining effort, such as upgraders (i.e., CO 2 , CO, CH 4 , NO, NO 2 , NO y , SO 2 , C 2 -C 4 alkanes, C 2 -C 4 alkenes, C 9 aromatics, short-lived solvents such as C 2 Cl 4 and C 2 HCl 3 , and longer-lived species such as HCFC-22 and HCFC-142b). Prominent in the second group, SO 2 and NO were remarkably enhanced over the oil sands, with maximum mixing ratios of 38.7 ppbv and 5.0 ppbv, or 383× and 319× the local background, respectively. These SO 2 levels are comparable to maximum values measured in heavily polluted megacities such as Mexico City and are attributed to coke combustion. By contrast, relatively poor correlations between CH 4 , ethane and propane suggest low levels of natural gas leakage despite its heavy use at the surface mining sites. Instead the elevat...
Correspondence to: L. G. Huey (greg.huey@eas.gatech.edu) predictions closer to the observations. These model comparisons confirmed our understanding of the dominant HO x sources and sinks in this environment and indicated that BrO impacted the OH levels at Summit. Although, significant discrepancies between observed and predicted OH could not be explained by the measured BrO. Finally, observations of enhanced RGM were found to be coincident with under prediction of OH.
Abstract. Reactive halogens, and in particular bromine oxide (BrO), have frequently been observed in regions with large halide reservoirs, for example during bromine catalyzed coastal polar ozone depletion events. Much less is known about the presence and impact of reactive halogens in areas without obvious halide reservoirs, such as the polar ice sheets or continental snow.We report the first LP-DOAS measurements of BrO at Summit research station in the center of the Greenland ice sheet at an altitude of 3200 m. BrO mixing ratios in May 2007 and June 2008 were typically between 1-3 pmol mol −1 , with maxima of up to 5 pmol mol −1 . These measurements unequivocally show that halogen chemistry is occurring in the remote Arctic, far from known bromine reservoirs, such as the ocean. During periods when FLEXPART retroplumes show that airmasses resided on the Greenland ice sheet for 3 or more days, BrO exhibits a clear diurnal variation, with peak mixing ratios of up to 3 pmol mol −1 in the morning and at night. The diurnal cycle of BrO can be explained by a changing boundary layer height combined with photochemical formation of reactive bromine driven by solar radiation at the snow surface. The shallow stable boundary layer in the morning and night leads to an accumulation of BrO at the surface, leading to elevated BrO despite the expected smaller release from the snowpack during these times of low solar radiation. During the day when photolytic formation of reacCorrespondence to: J. Stutz (jochen@atmos.ucla.edu) tive bromine is expected to be highest, efficient mixing into a deeper neutral boundary layer leads to lower BrO mixing ratios than during mornings and nights.The extended period of contact with the Greenland snowpack combined with the diurnal profile of BrO, modulated by boundary layer height, suggests that photochemistry in the snow is a significant source of BrO measured at Summit during the 2008 experiment.
Reaction of Au(+) ((1)S(0) and (3)D) with O(2) and N(2)O is studied as a function of kinetic energy using guided ion beam tandem mass spectrometry. A flow tube ion source produces Au(+) primarily in its (1)S(0) (5d(10)) electronic ground state level but with some (3)D and perhaps higher lying excited states. The distribution of states can be altered by adding N(2)O, which completely quenches the excited states, or CH(4) to the flow gases. Cross sections as a function of kinetic energy are measured for both neutral reagents and both ground and excited states of Au(+). Formation of AuO(+) is common to both systems with the N(2)O system also exhibiting AuN(2)(+) and AuNO(+) formation. All reactions of Au(+) ((1)S(0)) are observed to be endothermic, whereas the excitation energy available to the (3)D state allows some reactions to be exothermic. Because of the closed shell character of ground state Au(+) ((1)S(0), 5d(10)), the reactivity of these systems is low and has cross sections with onsets and peaks at higher energies than expected from the known thermochemistry but lower than energies expected from impulsive processes. Analyses of the endothermic reaction cross sections yield the 0 K bond dissociation energy (BDE) in eV of D(0)(Au(+)-O) = 1.12 ± 0.08, D(0)(Au(+)-N(2)) ≥ 0.30 ± 0.04, and D(0)(Au(+)-NO) = 0.89 ± 0.17, values that are all speculative because of the unusual experimental behavior. Combining the AuO(+) BDE measured here with literature data also yields the ionization energy of AuO as 10.38 ± 0.23 eV. Quantum chemical calculations show reasonable agreement with the experimental bond energies and provide the electronic structures of these species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.