Background In the cuprizone model of multiple sclerosis, de-and remyelination can be studied without major interference from the adaptive immune responses. Since previous proteomic studies did not focus on the corpus callosum, where cuprizone causes the most pronounced demyelination, we performed a bottom up proteomic analysis on this brain region. Methods Eight week-old mice treated with 0.2% cuprizone, for 4 weeks and controls (C) were sacrificed after termination of the treatment (4wD), and 2 (2dR) or 14 (2wR) days later. Homogenates of dissected corpus callosum were analysed by quantitative proteomics. For data processing, clustering, gene ontology analysis, and regulatory network prediction, we used Perseus, PANTHER and Ingenuity Pathway Analysis softwares, respectively. Results We identified 4886 unmodified, single-or multi phosphorylated and/or gycosylated (PTM) proteins. Out of them, 191 proteins were differentially regulated in at least one experimental group. We found 57 proteins specific for demyelination, 27 for early-and 57 for late remyelinationwhile 36 proteins were affected in two, and 23 proteins in all three groups. Phosphorylation represented 92% of the post translational modifications among differentially regulated modified (PTM) proteins with decreased level, while it was only 30% of the PTM proteins with increased level. Gene ontology analysis could not classify the demyelination specific proteins into any biological process category, while allocated the remyelination specific ones to nervous system development and myelination as the most specific subcategory. We also identified a protein network in experimental remyelination, and the gene
Summary Cladribine (CdA), an oral prodrug approved for the treatment of relapsing multiple sclerosis, selectively depletes lymphocytes. CdA passes the blood–brain barrier, suggesting a potential effect on central nervous system (CNS) resident cells. We examined if CdA modifies the phenotype and function of naive and activated primary mouse microglia, when applied in the concentrations 0·1–1 μM that putatively overlap human cerebrospinal fluid (CSF) concentrations. Primary microglia cultures without stimulation or in the presence of proinflammatory lipopolysaccharide (LPS) or anti‐inflammatory interleukin (IL)‐4 were treated with different concentrations of CdA for 24 h. Viability was assessed by MTT [3‐(4,5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyltetrazolium bromide] assay. Phagocytotic ability and morphology were examined by flow cytometry and random migration using IncuCyte Zoom and TrackMate. Change in gene expression was examined by quantitative polymerase chain reaction (qPCR) and protein secretion by Meso Scale Discovery. We found that LPS and IL‐4 up‐regulated deoxycytidine kinase (DCK) expression. Only activated microglia were affected by CdA, and this was unrelated to viability. CdA 0·1–1 μM significantly reduced granularity, phagocytotic ability and random migration of activated microglia. CdA 10 μM increased the IL‐4‐induced gene expression of arginase 1 (Arg1) and LPS‐induced expression of IL‐1β, tumor necrosis factor (TNF), inducible nitric oxide synthase (iNOS) and Arg1, but protein secretion remained unaffected. CdA 10 μM potentiated the increased expression of anti‐inflammatory TNF receptor 2 (TNF‐R2) but not TNF‐R1 induced by LPS. This suggests that microglia acquire a less activated phenotype when treated with 0·1–1 μM CdA that putatively overlaps human CSF concentrations. This may be related to the up‐regulated gene expression of DCK upon activation, and suggests a potential alternative mechanism of CdA with direct effect on CNS resident cells.
Background: MiR-146a is an important regulator of innate inflammatory responses and is also implicated in cell death and survival. Methods: By sorting CNS resident cells, microglia were the main cellular source of miR-146a. Therefore, we investigated microglia function and phenotype in miR-146a knockout (KO) mice, analyzed the proteome of KO and wild-type (WT) microglia by LC-MS/MS, and examined miR-146a expression in different brain lesions of patients with multiple sclerosis (MS). Results: When stimulated with LPS or myelin in vitro, microglia from KO mice expressed higher levels of IL-1β, TNF, IL-6, IL-10, CCL3, and CCL2 compared to WT. Stimulation increased migration and phagocytosis of WT but not KO microglia. CD11c + microglia were induced by cuprizone (CPZ) in the WT mice but less in the KO. The proteome of ex vivo microglia was not different in miR-146a KO compared to WT mice, but CPZ treatment induced differential and reduced protein responses in the KO: GOT1, COX5b, CRYL1, and cystatin-C were specifically changed in KO microglia. We explored discriminative features of microglia proteomes: sparse Partial Least Squares-Discriminant Analysis showed the best discrimination when control and CPZ-treated conditions were compared. Cluster of ten proteins separated WT and miR-146a KO microglia after CPZ: among them were sensomes allowing to perceive the environment, Atp1a3 that belongs to the signature of CD11c + microglia, and proteins related to inflammatory responses (S100A9, Ppm1g). Finally, we examined the expression of miR-146a and its validated target genes in different brain lesions of MS patients. MiR-146 was upregulated in all lesion types, and the highest expression was in active lesions. Nineteen of 88 validated target genes were significantly changed in active lesions, while none were changed in NAWM. Martin et al. MiR-146a and Microglia Conclusion: Our data indicated that microglia is the major source of miR-146a in the CNS. The absence of miR-146a differentially affected microglia function and proteome, and miR-146a may play an important role in gene regulation of active MS lesions.
Background: Cladribine (CdA), an oral prodrug approved for the treatment of relapsing multiple sclerosis, selectively depletes lymphocytes. CdA passes the blood-brain barrier suggesting a potential effect on CNS resident cells. Objective: We examined, if CdA modifies the phenotype and function of naïve and activated primary mouse microglia, when applied in different concentrations including 0.1-1 μM that putatively overlaps human CSF concentrations. Methods: Primary microglia cultures without stimulation or in the presence of proinflammatory lipopolysaccharide (LPS) or anti-inflammatory IL-4 were co-treated with different concentrations of CdA for 24 hours. Viability was assessed by MTT assay. Phagocytotic ability and morphology were examined by flow cytometry, and random migration by IncuCyte Zoom and TrackMate. Change in gene expression was examined by qPCR, and protein secretion by Meso Scale Discovery. Results: LPS and IL-4 upregulated deoxycytidine kinase (DCK) expression. Only activated microglia were affected by CdA, and this was unrelated to viability. CdA 0.1-1 μM significantly reduced granularity, phagocytotic ability and random migration of activated microglia. CdA 10 μM increased the IL-4-induced gene expression of Arg1 and LPS-induced expression of IL-1beta, TNF, iNOS, and Arg1, but protein secretion remained unaffected. CdA 10 μM potentiated the increased expression of anti-inflammatory TNFR2 but not TNFR1 induced by LPS. Conclusion: Microglia acquire a less activated phenotype when treated with 0.1-1 μM CdA that putatively overlaps human CSF concentrations. This may be related to the upregulated gene expression of DCK upon activation and suggests a potential alternative mechanism of CdA with direct effect on CNS resident cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.