The effect of rumen microbes on six mycotoxins (aflatoxin B,, ochratoxin A, zearalenone, T-2 toxin, diacetoxyscirpenol, and deoxynivalenol) considered to be health risks for domestic animals was investigated. The mycotoxins were incubated with intact rumen fluid or fractions of rumen protozoa and bacteria from sheep and cattle in the presence or absence of milled feed. Rumen fluid had no effect on aflatoxin B1 and deoxynivalenol. The remaining four mycotoxins were all metabolized, and protozoa were more active than bacteria. Metabolism of ochratoxin A, zearalenone, and diacetoxyscirpenol was moderately or slightly inhibited by addition of milled feed in vitro. The capacity of rumen fluid to degrade ochratoxin A decreased after feeding, but this activity was gradually restored by the next feeding time. Ochratoxin A was cleaved to ochratoxin a and phenylalanine; zearalenone was reduced to a-zearalenol and to a lesser degree to Izearalenol; diacetoxyscirpenol and T-2 toxin were deacetylated to monoacetoxyscirpenol and HT-2 toxin, respectively. Feeding of 5 ppm (5 mg/kg) of ochratoxin A to sheep revealed 14 ppb (14 ng/ml) of ochratoxin A and ochratoxin a in rumen fluid after 1 h, but neither was detected in the blood. Whether such conversions in the rumen fluid may be considered as a first line of defense against toxic compounds present in the diet is briefly discussed.
1. Kinetic experiments suggested the possible existence of at least two different NAD(+)-dependent aldehyde dehydrogenases in rat liver. Distribution studies showed that one enzyme, designated enzyme I, was exclusively localized in the mitochondria and that another enzyme, designated enzyme II, was localized in both the mitochondria and the microsomal fraction. 2. A NADP(+)-dependent enzyme was also found in the mitochondria and the microsomal fraction and it is suggested that this enzyme is identical with enzyme II. 3. The K(m) for acetaldehyde was apparently less than 10mum for enzyme I and 0.9-1.7mm for enzyme II. The K(m) for NAD(+) was similar for both enzymes (20-30mum). The K(m) for NADP(+) was 2-3mm and for acetaldehyde 0.5-0.7mm for the NADP(+)-dependent activity. 4. The NAD(+)-dependent enzymes show pH optima between 9 and 10. The highest activity was found in pyrophosphate buffer for both enzymes. In phosphate buffer there was a striking difference in activity between the two enzymes. Compared with the activity in pyrophosphate buffer, the activity of enzyme II was uninfluenced, whereas the activity of enzyme I was very low. 5. The results are compared with those of earlier investigations on the distribution of aldehyde dehydrogenase and with the results from purified enzymes from different sources.
This study was undertaken to establish whether fatty acids are generally oxidized at the same rate or if a pattern of oxidation rates exists to protect certain fatty acids from degradation for ATP formation. Beta-oxidation was studied in red muscle mitochondria of 10 major fatty acids that are acquired in the diet and occur in the fat depots of rainbow trout (Oncorhynchus mykiss Walbaum). The mitochondria were isolated by fractional centrifugation and the fatty acids were added as coenzyme A esters in the presence of carnitine. The fatty acids could be separated into roughly three groups in relation to their oxidation rates. Two fatty acids (14:0 and 16:0) were oxidized as rapidly as pyruvate. Another six acids (16:1 n − 7, 18:0, 18:1 n − 9, 20:1 n − 9, 22:1 n − 9 and 22:6 n − 3) were oxidized at about three-quarters to one-half the rate of pyruvate. The two essential fatty acids (18:2 n − 6 and 18:3 n − 3) had a slow oxidation rate, about one-fifth of that of pyruvate. The liver mitochondria from rainbow trout oxidized 18:0, 18:1, 18:2, and 18:3 at the same rate, 70–80% of that of pyruvate. These results show that rainbow trout red muscle discriminates between fatty acids used in energy production and essential fatty acid precursors, as indicated by the low β-oxidation rate of the latter acids.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.