The multi-messenger observation of gamma-ray burst (GRB) 170817A from the nearby binary neutron-star merger GW170817 demonstrated that low-energy γ-ray emission can be observed at relatively large angles from GRB jet axes. If such structured emission is typical, then the currently known sample of short GRBs with no distance measurements may contain multiple nearby off-axis events whose delayed afterglows could have gone undetected. These nearby neutron star mergers may produce telltale radio flares peaking years after the prompt GRB emission that could still be observable. Here, we show that several short GRBs observed by the Burst Alert Telescope (BAT) on the Neil Gehrels Swift satellite, with no identified afterglow and no distance measurement, could potentially be associated with radio flares detectable by sensitive cm-wavelength radio facilities such as the Karl G. Jansky Very Large Array. We also examine optical follow-up observations that have been carried out for these events, and find that a nearby GW170817-like kilonova is ruled out for only a third of them.
The multi-messenger discovery of gravitational waves (GWs) and light from the binary neutron star (NS) merger GW170817, associated with gamma-ray burst (GRB) 170817A and kilonova AT2017gfo, has marked the start of a new era in astrophysics. GW170817 has confirmed that binary NS mergers are progenitors of at least some short GRBs. The peculiar properties of the GRB 170817A radio afterglow, characterized by a delayed onset related to the off-axis geometry, have also demonstrated how some nearby short GRBs may not be identified as such with standard short-timescale electromagnetic follow-up observations. Building upon this new information, we performed late-time radio observations of a sample of four short GRBs with unknown redshift and no previously detected afterglow in the Swift/BAT sample in order to identify nearby ( Mpc) off-axis GRB candidates via their potential late-time radio signatures. We find a previously uncatalogued radio source within the error region of GRB 130626 with a flux density consistent with an NS radio flare at a distance of ∼100 Mpc. An origin related to a persistent radio source unrelated to the GRB cannot be excluded nor confirmed given the high chance of false positives in error regions as large as those considered here, and the limited time baseline of our observations. Further radio (and X-ray) follow-up observations are needed to better understand the origin of this source.
The heaviest elements in the universe are synthesized through rapid neutron capture (r-process) in extremely neutron-rich outflows. Neutron star mergers were established as an important r-process source through the multimessenger observation of GW170817. Collapsars were also proposed as a potentially major source of heavy elements; however, this is difficult to probe through optical observations due to contamination by other emission mechanisms. Here we present observational constraints on r-process nucleosynthesis by collapsars based on radio follow-up observations of nearby long gamma-ray bursts (GRBs). We make the hypothesis that late-time radio emission arises from the collapsar wind ejecta responsible for forging r-process elements, and consider the constraints that can be set on this scenario using radio observations of a sample of Swift/Burst Alert Telescope GRBs located within 2 Gpc. No radio counterpart was identified in excess of the radio afterglow of the GRBs in our sample. This gives the strictest limit to the collapsar r-process contribution of ≲0.2 M ⊙ for GRB 060505 and GRB 05826, under the models we considered. Our results additionally constrain energy injection by a long-lived neutron star remnant in some of the considered GRBs. While our results are in tension with collapsars being the majority of r-process production sites, the ejecta mass and velocity profile of collapsar winds, and the emission parameters, are not yet well modeled. As such, our results are currently subject to large uncertainties, but further theoretical work could greatly improve them.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.