Absfracf -Silicon nanocrystals provide opportunity to solve the challenging problem of tunnel oxide scaling of conventional Flash memories by increasing immunity to charge loss via tunnel oxide defects. New aspects in silicon nanocrystal memory technology include Coulomb blockade or charge confinement effects, atomistic nucleation, and nanocrystal passivation to preserve them during subsequent processing and progranderase endurance characteristics. This paper discusses the above characteristics and culminates in presenting salient results from 4 Mb NOR memory arrays fabricated using 90nm CMOS technology. Excellent memory characteristics including tight Vt distributions are obtained using a tunnel oxide thickness of Snm and a 6V power supply.
Localizing defects in one-of-a-kind failures can take days, weeks, or even months, after which a detailed physical analysis is conducted to determine the root cause. TEM and STEM play complimentary roles in this process; TEM because of its superior spatial resolution and STEM because it produces images that are easier to interpret and is less susceptible to chromatic aberrations that can occur in thicker samples. In the past, the use of STEM in FA has been limited due to the time required to switch between imaging modes, but with the emergence of TEM/STEM microscopes with computer controlled lenses, the use of STEM is increasing. This article provides an overview of STEM techniques and present examples showing how it is used to characterize subtle and complex defects in ICs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.