It has been suggested that Earth's current supply of water was delivered by asteroids, some time after the collision that produced the Moon (which would have vaporized any of the pre-existing water). So far, no measurements of water ice on asteroids have been made, but its presence has been inferred from the comet-like activity of several small asteroids, including two members of the Themis dynamical family. Here we report infrared spectra of the asteroid 24 Themis which show that ice and organic compounds are not only present on its surface but also prevalent. Infrared spectral differences between it and other asteroids make 24 Themis unique so far, and our identification of ice and organics agrees with independent results that rule out other compounds as possible sources of the observed spectral structure. The widespread presence of surface ice on 24 Themis is somewhat unexpected because of the relatively short lifetime of exposed ice at this distance ( approximately 3.2 au) from the Sun. Nevertheless, there are several plausible sources, such as a subsurface reservoir that brings water to the surface through 'impact gardening' and/or sublimation.
Context. (65) Cybele is the most representative member of a population of primitive asteroids in the outer edge of the main belt, the Cybele asteroids. Recent dynamical models suggest that a significant fraction of them originated in the primordial transneptunian disk, so the study of the physical properties of these asteroids is potentially a useful test of these models. Aims. Our aim is to obtain information on the surface composition of this asteroid. In particular we want to obtain information on the composition and properties of the regolith and the possible presence of ices and organic materials. Methods. We present 2-4 μm and 5-14 μm spectroscopy of (65) Cybele obtained with the NASA IRTF telescope and Spitzer Space Telescope respectively. We compare the results with spectra of Trojan asteroids and asteroid (24) Themis. We analyze the 2-4 μm spectrum using scattering models and we apply thermal models to the 5-14 μm data. Results. The 2-4 μm spectrum of (65) Cybele presents an absorption band centered at ∼3.1 μm and more weaker bands in the 3.2-3.6 μm region, very similar to those observed in (24) Themis. No hydrated silicates are detected. From the spectrum in the 5-14 μm region an effective diameter D = 290 ± 5 km, a beaming paramete η = 0.967 ± 0.014, and a geometric visible albedo p V = 0.05 ± 0.01 are derived using the NEATM thermal model. The emisivity spectrum in the 5-14 μm range exhibits an emission plateau at about 9 to 12 μm with an spectral contrast of ∼5%. This emission is similar to that of Trojan asteroids and active comets and may be due to small silicate grains being imbedded in a relatively transparent matrix, or to a very under-dense (fairy-castle) surface structure. The lower amplitude of the silicate emission in Cybele's spectrum with respect to that of Trojan asteroids could be attributed to larger dust particles and/or a slightly denser structure. Conclusions. The surface of (65) Cybele is covered by a fine anhydrous silicate grains mantle, with a small amount of water ice and complex organic solids. This is similar to comet surface where non-equilibrium phases coexist. The presence of water-ice and anhydrous silicates is indicative that hydration did not happened or is incomplete, suggesting that the temperatures were always sufficiently low.
Context. The Themis collisional family is one of the largest and best established families in the main belt. Composed of primitive asteroids, there is evidence that water is likely present in a large fraction of its members, either in aqueously altered silicates or in water ice reservoirs. The study of the abundance of water in the outer asteroid belt is important as it may be linked to the origin of Earth's water. Studying the Themis family can also help to constrain the compositional and thermal environment in the region of the solar nebula where these asteroids formed. Aims. Our aim is to constrain the composition and thermal properties of the surfaces of several Themis family asteroids. Methods. We present 5-14 μm spectra of 8 Themis family asteroids observed with Spitzer: (222) Lucia, (223) Rosa, (316) Goberta, (383) Janina, (468) Lina, (492) Gismonda, (515) Athalia, and (526) Jena. We determine their diameters, geometric albedos and beaming parameters using the near-Earth asteroid thermal model. Their emissivity spectra are studied in order to determine if they exhibit an emission plateau from 9 to 12 μm which has been observed in other primitive asteroids and attributed to fine-grained silicates (the Si-O stretch fundamental). Results. The derived mean albedo of our sample of Themis family asteroids isp V = 0.07 ± 0.02, and the mean beaming parameter is η = 1.05 ± 0.10. The derivedη value is close to unity, which implies that the infrared beaming is not significant, there is likely little night-side emission from the asteroids, and the thermal inertia is probably low. The emissivity spectra of at least 5 of our 8 asteroids show a 9-12 μm emission plateau with spectral contrast of ∼2-4%, similar but smaller than that observed in the spectra of Trojan asteroids and cometary dust. The plateau may be due to the surfaces having either small silicate grains embedded in a relatively transparent matrix, or from a very under-dense (fairy-castle) surface structure. Conclusions. The surfaces of a large fraction of Themis family asteroids with D ∼ 50 km are covered by a fine grained silicate mantle as observed on Trojan asteroids of similar or larger size. The lower amplitude of the silicate emission in Themis family asteroids spectra (2-4%) with respect to that of Trojan asteroids (10-15%) could be attributed to larger dust particles, a slightly denser structure, or a lower silicate dust fraction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.