Aim: To develop and validate a simple, precise, accurate and robust RP-HPLC method for the determination of Pemigatinib by using Design of Experiments (DoE) approach. Study Design: A 23 Factorial design consisting of three factors at two levels was considered for the experimental plan initially to select the initial chromatographic conditions and optimization was done using Box-Behnken Design. The critical method parameters selected for optimization were % Organic phase composition, pH of the buffer and flow rate. The critical quality attributes investigated were retention time, theoretical plates and tailing factor. Methodology: Chromatographic separation was achieved on Agilent Zorbax XDB C18 (250×4.6 mm, 5 µm) column maintained at ambient temperature and PDA-UV detection set at 262nm. The optimized and predicted data from the Design Expert® (12.0.12.0) modelling software (Stat-Ease Inc., Minneapolis, MN, USA) consisted of mobile phase 0.1% OPA pH 2.5 buffer (60%): Acetonitrile (40%) pumped at a flow rate of 1.06ml/min gave the highest desirability. Results: The retention time of the drug was found to be 3.258 min. The developed method was linear over the concentration range of 25-150 µg/mL with correlation coefficient of 0.999. The optimized method was validated as per ICH Q2 (R1) guidelines. Conclusion: Based on the ANOVA results, the selected models for the responses retention time and tailing factor were found to be significant with P=0.05. 2D Contour plots were used to visualize the effect of factors and their interactions on the responses. Design validation was done using predicted vs. actual plots for the responses. The results of the validation parameters were within the acceptable limit. The stability of the drug was examined under different stress conditions forcibly and significant degradation was found in reductive condition.
Purpose:Osmotic devices are the most promising strategy-based systems for controlled drug delivery. By optimizing formulation and processing parameters, possible to develop osmotic systems to deliver drugs at predetermined rate with high in vitro-in vivo correlation. The aim of the present investigation was to develop an oral elementary osmotic pump (EOP) of atenolol with zero-order or near zero-order drug release profile.Materials and Methods:Differential scanning calorimetry and Fourier transform-infrared spectroscopy studies did not show any evidence of interaction between the drug and excipients. Formulations were prepared by wet granulation method and coated with cellulose acetate (CA)/ethyl cellulose containing varying amounts of dibutyl phthalate (DBP)/poly (ethylene glycol)-400 as a plasticizer. The effect of different formulation variables on drug release: type and concentration of osmogen and plasticizer, size of the delivery orifice, nature of the rate controlling membrane, and membrane weight gain were studied. The release studies also compared with marketed immediate release formulation.Results:Formulations containing NaCl, mannitol, and combination of both as osmogens in the drug:osmogen ratio of 1:3 and 1:4 showed zero-order drug release. Marketed tablet releases more than 95% drug in different media in 90 min. The 4% CA in acetone with DBP as a plasticizer (at a concentration of 15% w/w of polymer), with orifice diameter 565 μm, and 8.05% increase in weight on coating were found to control the drug release independent of pH and agitational intensity. The formulations were stable for 3 months as per the International Council for Harmonisation guidelines.Conclusion:Atenolol containing EOPs and process parameters on release studies were studied and confirmed based on osmotic technology.
Oral drug delivery is the most widely utilized route of administration among all the routes that have been explored for systemic delivery of drugs via pharmaceutical products of different dosage form. Oral route is considered most natural, uncomplicated, convenient and safe due to its ease of administration, patient acceptance and cost-effective manufacturing process. Gastroretentive drug delivery system was developed in pharmacy field and drug retention for a prolonged time has been achieved. The goal of this study was to formulate and in-vitro evaluate Ciprofloxacin HCl controlled release matrix floating tablets. Ciprofloxacin HCl floating matrix tablets were prepared by wet granulation method using two polymers such as HPMC K100M (hydrophilic polymer) and HPMC K15M. All the Evaluation parameters were within the acceptable limits. FTIR spectral analysis showed that there was no interaction between the drug and polymers. In-vitro dissolution study was carried out using USP dissolution test apparatus (paddle type) at 50 rpm. The test was carried out at 37 ± 0.5 0C in 900ml of the 0.1 N HCl buffer as the medium for eight hours. HPMC K100M shows a prolonged release when compared to HPMC K15M. These findings indicated that HPMC K100M can be used to develop novel gastroretentive controlled release drug delivery systems with the double advantage of controlled drug release at GIT pH. On comparing the major criteria in evaluation such as preformulation and in vitro drug release characteristics, the formulation F8 was selected as the best formulation, as it showed the drug content as 99±0.4% and swelling index ratio was 107.14, and in-vitro drug released 61.31±0.65% up to 8 hours. Results indicated that controlled Ciprofloxacin HCl release was directly proportional to the concentration of HPMC K100M and the release of drug followed non-Fickian diffusion. Based on all the above evaluation parameters it was concluded that the formulation batch F8 was found to be best formulation among the formulations F1 to F8 were prepared.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.