MMP9 is a member of the family of zinc-containing endopeptidases which degrade various components of the extracellular matrix, thereby regulating matrix remodeling. Since matrix remodeling plays an important role during growth and progression of cancer and considering the fact that, tumor cells switch to aerobic glycolysis as its major energy source, this study was designed to analyze if partial inhibition of glycolysis (the major energy pathway during hypoxia) can be used as a means to control matrix remodeling in terms of MMP9 activity and expression. For this, human epithelial carcinoma cells were treated with glycolytic inhibitor, 2-deoxy glucose (2DG) at sub-lethal concentrations followed by analysis of the expression and activity of MMP2 and MMP9. The experimental findings demonstrate that exposure of cancer cells to glycolytic inhibitor at concentration that does not induce ER stress, downregulates the activity and expression of MMP9 without affecting the expression levels and activity of MMP2. Further mechanistic analysis revealed that the regulation of MMP9 was mediated in a SIRT-1 dependent mechanism and did not alter the NFkB signaling pathway. The overall results presented here, therefore suggest that the use of glycolytic inhibitor, 2DG at concentration that do not affect cell viability or induce ER stress can be an effective strategy to control matrix remodeling.
The present study was proposed to elucidate the effect of Commiphora mukul gum resin elthanolic extract treatment on alterations in carbohydrate and lipid metabolisms in rats fed with high-fructose diet. Male Wistar rats were divided into four groups: two of these groups (group C and C+CM) were fed with standard pellet diet and the other two groups (group F and F+CM) were fed with high fructose (66 %) diet. C. mukul suspension in 5% Tween-80 in distilled water (200 mg/kg body weight/day) was administered orally to group C+CM and group F+CM. At the end of 60-day experimental period, biochemical parameters related to carbohydrate and lipid metabolisms were assayed. C. mukul treatment completely prevented the fructose-induced increased body weight, hyperglycemia, and hypertriglyceridemia. Hyperinsulinemia and insulin resistance observed in group F decreased significantly with C. mukul treatment in group F+CM. The alterations observed in the activities of enzymes of carbohydrate and lipid metabolisms and contents of hepatic tissue lipids in group F rats were significantly restored to near normal values by C. mukul treatment in group F+CM. In conclusion, our study demonstrated that C. mukul treatment is effective in preventing fructose-induced insulin resistance and hypertriglyceridemia while attenuating the fructose induced alterations in carbohydrate and lipid metabolisms by the extract which was further supported by histopathological results from liver samples which showed regeneration of the hepatocytes. This study suggests that the plant can be used as an adjuvant for the prevention and/or management of insulin resistance and disorders related to it.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.