No abstract
We report the results of a multi-year spectroscopic and photometric survey of novae in M31 that resulted in a total of 53 spectra of 48 individual nova candidates. Two of these, M31N 1995-11e and M31N 2007-11g, were revealed to be long-period Mira variables, not novae. These data double the number of spectra extant for novae in M31 through the end of 2009 and bring to 91 the number of M31 novae with known spectroscopic classifications. We find that 75 novae (82%) are confirmed or likely members of the Fe II spectroscopic class, with the remaining 16 novae (18%) belonging to the He/N (and related) classes. These numbers are consistent with those found for Galactic novae. We find no compelling evidence that spectroscopic class depends sensitively on spatial position or population within M31 (i.e., bulge vs. disk), although the distribution for He/N systems appears slightly more extended than that for the Fe II class. We confirm the existence of a correlation between speed class and ejection velocity (based on line width), as in the case of Galactic novae. Follow-up photometry allowed us to determine light-curve parameters for a total of 47 of the 91 novae with known spectroscopic class. We confirm that more luminous novae generally fade the fastest, and that He/N novae are typically faster and brighter than their Fe II counterparts. In addition, we find a weak dependence of nova speed class on position in M31, with the spatial distribution of the fastest novae being slightly more extended than that of slower novae.
, U. hopp 5,6 , C. Haumea-one of the four known trans-Neptunian dwarf planetsis a very elongated and rapidly rotating body 1-3 . In contrast to other dwarf planets [4][5][6] , its size, shape, albedo and density are not well constrained. The Centaur Chariklo was the first body other than a giant planet known to have a ring system 7 , and the Centaur Chiron was later found to possess something similar to Chariklo's rings 8,9 . Here we report observations from multiple Earth-based observatories of Haumea passing in front of a distant star (a multichord stellar occultation). Secondary events observed around the main body of Haumea are consistent with the presence of a ring with an opacity of 0.5, width of 70 kilometres and radius of about 2,287 kilometres. The ring is coplanar with both Haumea's equator and the orbit of its satellite Hi'iaka. The radius of the ring places it close to the 3:1 mean-motion resonance with Haumea's spin period-that is, Haumea rotates three times on its axis in the time that a ring particle completes one revolution. The occultation by the main body provides an instantaneous elliptical projected shape with axes of about 1,704 kilometres and 1,138 kilometres. Combined with rotational light curves, the occultation constrains the three-dimensional orientation of Haumea and its triaxial shape, which is inconsistent with a homogeneous body in hydrostatic equilibrium. Haumea's largest axis is at least 2,322 kilometres, larger than previously thought, implying an upper limit for its density of 1,885 kilograms per cubic metre and a geometric albedo of 0.51, both smaller than previous estimates 1, 10,11 . In addition, this estimate of the density of Haumea is closer to that of Pluto than are previous estimates, in line with expectations. No global nitrogen-or methane-dominated atmosphere was detected.Within our programme of physical characterization of trans-Neptunian objects (TNOs), we predicted an occultation of the star URAT1 533− 182543 by the dwarf planet (136108) Haumea and arranged observations as explained in Methods. Positive occultation detections were obtained on 2017 January 21, from twelve telescopes at ten different observatories. The instruments and the main features of each station are listed in Table 1.As detailed in Methods (see also Fig. 1), the light curves (the normalized flux from the star plus Haumea versus time) show deep 1 2
The spin rate distribution of main belt/Mars crossing (MB/MC) asteroids with diameters 3-15 km is uniform in the range from f = 1 to 9.5 d −1 , and there is an excess of slow rotators with f < 1 d −1 . The observed distribution appears to be controlled by the Yarkovsky-O'Keefe-Radzievskii-Paddack (YORP) effect. The magnitude of the excess of slow rotators is related to the residence time of slowed down asteroids in the excess and the rate of spin rate change outside the excess. We estimated a median YORP spin rate change of ≈ 0.022 d −1 /Myr for asteroids in our sample (i.e., a median time in which the spin rate changes by 1 d −1 is ≈ 45 Myr), thus the residence time of slowed down asteroids in the excess is ≈ 110 Myr. The spin rate distribution of near-Earth asteroids (NEAs) with sizes in the range 0.2 -3 km (∼ 5-times smaller in median diameter than the MB/MC asteroids sample) shows a similar excess of slow rotators, but there is also a concentration of NEAs at fast spin rates with f = 9-10 d −1 . The concentration at fast spin rates is correlated with a narrower distribution of spin rates of primaries of binary systems among NEAs; the difference may be due to the apparently more evolved population of binaries among MB/MC asteroids.
Context. Optical novae have recently been identified as the major class of supersoft X-ray sources in M 31 based on ROSAT and early XMM-Newton and Chandra observations. Aims. This paper reports on a search for X-ray counterparts of optical novae in M 31 based on archival Chandra HRC-I and ACIS-I as well as XMM-Newton observations of the galaxy center region obtained from July 2004 to February 2005. Methods. We systematically determine X-ray brightness or upper limit for counterparts of all known optical novae with outbursts between November 2003 to the end of the X-ray coverage. In addition, we determine the X-ray brightnesses for counterparts of four novae with earlier outbursts. Results. For comparison with the X-ray data we created a catalogue of optical novae in M 31 based on our own nova search programs and on all novae reported in the literature. We collected all known properties and named the novae consistently following the CBAT scheme. We detect eleven out of 34 novae within a year after the optical outburst in X-rays. While for eleven novae we detect the end of the supersoft source phase, seven novae are still bright more than 1200, 1600, 1950, 2650, 3100, 3370 and 3380 d after outburst. One nova is detected to turn on 50 d, another 200 d after outburst. Three novae unexpectedly showed short X-ray outbursts starting within 50 d after the optical outburst and lasting only two to three months. The X-ray emission of several of the novae can be characterized as supersoft from hardness ratios and/or X-ray spectra or by comparing HRC-I count rates with ACIS-I count rates or upper limits. Conclusions. The number of detected optical novae at supersoft X-rays is much higher than previously estimated (>30%). We use the X-ray light curves to estimate the burned masses of the White Dwarf and of the ejecta.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.