Magnetically induced ferroelectric multiferroics present an exciting new paradigm in the design of multifunctional materials, by intimately coupling magnetic and polar order. Magnetoelectricity creates a novel quasiparticle excitation-the electromagnon-at terahertz frequencies, with spectral signatures that unveil important spin interactions. To date, electromagnons have been discovered at low temperature (o70 K) and predominantly in rare-earth compounds such as RMnO 3 . Here we demonstrate using terahertz time-domain spectroscopy that intersublattice exchange in the improper multiferroic cupric oxide (CuO) creates electromagnons at substantially elevated temperatures (213-230 K). Dynamic magnetoelectric coupling can therefore be achieved in materials, such as CuO, that exhibit minimal static cross-coupling. The electromagnon strength and energy track the static polarization, highlighting the importance of the underlying cycloidal spin structure. Polarized neutron scattering and terahertz spectroscopy identify a magnon in the antiferromagnetic ground state, with a temperature dependence that suggests a significant role for biquadratic exchange.
Coherent magnons and acoustic phonons were impulsively excited and probed in thin films of the room temperature multiferroic Bi 1−x−y Dy x La y FeO 3 using femtosecond laser pulses. The elastic moduli of rhombohedral, tetragonal, and rare-earth doped BiFeO 3 were determined from acoustic-mode frequencies in conjunction with spectroscopic ellipsometry. A weak ferromagnetic order, induced alternately by magnetization in the growth direction or by tetragonality, created a magnon oscillation at 75 GHz, indicative of a Dzyaloshinskii-Moriya interaction energy of 0.31 meV.
Polarization-resolved terahertz (THz) time-domain spectroscopy was utilized to examine the complex refractive index of lanthanum aluminate (LaAlO3), a rhombohedrally distorted perovskite that exhibits crystallographic twin domains. The uniaxial anisotropy of the refractive index was quantified. The ellipticity of THz radiation pulses after transmission through single domains indicated that LaAlO3 can be used as a quarter- or half-wave plate. The effective anisotropy of [001]-oriented LaAlO3 was found to be reduced when the material exhibited multiple, narrow twin domains.
Bulk crystals and thin films of PbTi1−xFexO3−δ (PTFO) are multiferroic, exhibiting ferroelectricity and ferromagnetism at room temperature. Here we report that the Ruddlesden-Popper phase Pbn+1(Ti1−xFex)nO3n+1−δ forms spontaneously during pulsed laser deposition of PTFO on LaAlO3 substrates. High-resolution transmission electron microscopy, x-ray diffraction and x-ray photoemission spectroscopy were utilised to perform a structural and compositional analysis, demonstrating that and . The complex dielectric function of the films was determined from far-infrared to ultraviolet energies using a combination of terahertz time-domain spectroscopy, Fourier transform spectroscopy, and spectroscopic ellipsometry. The simultaneous Raman and infrared activity of phonon modes and the observation of second harmonic generation establishes a non-centrosymmetric point group for Pbn+1(Ti0.5Fe0.5)nO3n+1−δ, a prerequisite for (but not proof of) ferroelectricity. No evidence of macroscopic ferromagnetism was found in SQUID magnetometry. The ultrafast optical response exhibited coherent magnon oscillations compatible with local magnetic order, and additionally was used to study photocarrier cooling on picosecond timescales. An optical gap smaller than that of BiFeO3 and long photocarrier lifetimes may make this system interesting as a ferroelectric photovoltaic.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.