Local voltage clamping was applied to mouse macrophage plasma membrane to study calcium channels activated by inositol-1,4,5-triphosphate (IP3) and blocked by heparin. These channels were clearly distinguished from IP3-activated channels of the endoplasmic reticulum by their low conductivity (about 1 pSm for 100 mM Ca2+), high selectivity for Ca2+ relative to K+ (P(Ca):P(K) > 1000), calcium inactivation, and activation on hyperpolarization; these properties allowed them to be assigned to the I(CRAC) family. On the other hand, the properties of the IP3 receptors of these channels (IP3R), i.e., the dose-dependent effect of IP3, the IP3 desensitization of the receptor, and the sensitivity to micromolar concentrations of heparin and arachidonic acid were close to those of the endoplasmic reticulum IP3 receptor. The most likely interpretation of these data is that IP3R are not located in the endoplasmic reticulum, but, acting via some kind of conformational change occurring on binding of IP3, transmit a signal from the endoplasmic reticulum to the highly selective Ca2+ channels. This point of view is in agreement with the published "coupling model" [1].
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.