Regulation of Ca(2+) entry is a key process for lymphocyte activation, cytokine synthesis and proliferation. Several members of the transient receptor potential (TRP) channel family can contribute to changes in [Ca(2+)](in); however, the properties and expression levels of these channels in human lymphocytes continue to be elusive. Here, we established and compared the expression of the most Ca(2+)-selective members of the TRPs, Ca(2+) channels transient receptor potential vanilloid 5 and 6 (TRPV5 and TRPV6), in human blood lymphocytes (HBLs) and leukemia Jurkat T cells. We found that TRPV6 and TRPV5 mRNAs are expressed in both Jurkat cells and quiescent HBLs; however, the levels of mRNAs were significantly higher in malignant cells than in quiescent lymphocytes. Western blot analysis showed TRPV5/V6 proteins in Jurkat T cells and TRPV5 protein in quiescent HBLs. However, the expression of TRPV6 protein was switched off in quiescent HBLs and turned on after mitogen stimulation of the cells with phytohemagglutinin. Inwardly directed monovalent currents that displayed characteristics of TRPV5/V6 currents were recorded in both Jurkat cells and normal HBLs. In outside-out patch-clamp studies, currents were reduced by ruthenium red, a nonspecific inhibitor of TRPV5/V6 channels. In addition, ruthenium red downregulated cell-cycle progression in both activated HBLs and Jurkat cells. Thus, we identified TRPV5 and TRPV6 calcium channels, which can be considered new candidates for Ca(2+) entry into human lymphocytes. The correlation between expression of TRPV6 channels and the proliferative status of lymphocytes suggests that TRPV6 may be involved in the physiological and/or pathological proliferation of lymphocytes.
In blood cells, changes in intracellular Ca(2+) concentration ([Ca(2+)](i)) are associated with multiple cellular events, including activation of cellular kinases and phosphatases, degranulation, regulation of cytoskeleton binding proteins, transcriptional control, and modulation of surface receptors. Although there is no doubt as to the significance of Ca(2+) signaling in blood cells, there is sparse knowledge about the molecular identities of the plasmalemmal Ca(2+) permeable channels that control Ca(2+) fluxes across the plasma membrane and mediate changes in [Ca(2+)](i) in blood cells. Using RNA expression analysis, we have shown that human leukemia K562 cells endogenously coexpress transient receptor potential vanilloid channels type 5 (TRPV5) and type 6 (TRPV6) mRNAs. Moreover, we demonstrated that TRPV5 and TRPV6 channel proteins are present in both the total lysates and the crude membrane preparations from leukemia cells. Immunoprecipitation revealed that a physical interaction between TRPV5 and TRPV6 may take place. Single-channel patch-clamp experiments demonstrated the presence of inwardly rectifying monovalent currents that displayed kinetic characteristics of unitary TRPV5 and/or TRPV6 currents and were blocked by extracellular Ca(2+) and ruthenium red. Taken together, our data strongly indicate that human myeloid leukemia cells coexpress functional TRPV5 and TRPV6 calcium channels that may interact with each other and contribute into intracellular Ca(2+) signaling.
Local voltage clamping was applied to mouse macrophage plasma membrane to study calcium channels activated by inositol-1,4,5-triphosphate (IP3) and blocked by heparin. These channels were clearly distinguished from IP3-activated channels of the endoplasmic reticulum by their low conductivity (about 1 pSm for 100 mM Ca2+), high selectivity for Ca2+ relative to K+ (P(Ca):P(K) > 1000), calcium inactivation, and activation on hyperpolarization; these properties allowed them to be assigned to the I(CRAC) family. On the other hand, the properties of the IP3 receptors of these channels (IP3R), i.e., the dose-dependent effect of IP3, the IP3 desensitization of the receptor, and the sensitivity to micromolar concentrations of heparin and arachidonic acid were close to those of the endoplasmic reticulum IP3 receptor. The most likely interpretation of these data is that IP3R are not located in the endoplasmic reticulum, but, acting via some kind of conformational change occurring on binding of IP3, transmit a signal from the endoplasmic reticulum to the highly selective Ca2+ channels. This point of view is in agreement with the published "coupling model" [1].
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.