Tunneling magnetoresistance was found to be suppressed with decreasing temperature for magnetic tunnel junctions (MTJs) oxidized under high plasma power. A strong temperature dependence of the junction resistance was observed, along with zero-bias anomalies of dynamic resistance at low temperatures. Resistance shows a logarithmic dependence on temperature, and resistance versus temperature exhibits a scaling behavior. Our experimental data can be explained in a consistent way by the Kondo effect in the MTJs with the Kondo temperature TK=20-30 K.
The ferromagnetic ordering in Mn-doped ZnO thin films grown by pulsed laser deposition (PLD) as a function of oxygen pressure and substrate temperature has been investigated. Room-temperature ferromagnetic behaviors in the Mn-doped ZnO films grown at 700°C and 800°C under 10 ÿ1 torr in oxygen pressure were found, whereas ferromagnetic ordering in the films grown under 10 ÿ3 torr disappeared at 300 K. The large positive magnetoresistance (MR), ;10%, was observed at 5 K at low fields and small negative MR was observed at high fields, irrespective of oxygen pressure. In particular, anomalous Hall effect (AHE) in the Mn-doped ZnO film grown at 700°C under 10 ÿ1 Torr has been observed up to 210 K. In this work, the observed AHE is believed to be further direct evidence demonstrating that the Mn-doped ZnO thin films are ferromagnetic.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.