FLUXNET is a global network of micrometeorological flux measurement sites that measure the exchanges of carbon dioxide, water vapor, and energy between the biosphere and atmosphere. At present over 140 sites are operating on a long-term and continuous basis. Vegetation under study includes temperate conifer and broadleaved (deciduous and evergreen) forests, tropical and boreal forests, crops, grasslands, chaparral, wetlands, and tundra. Sites exist on five continents and their latitudinal distribution ranges from 70°N to 30°S. FLUXNET has several primary functions. First, it provides infrastructure for compiling, archiving, and distributing carbon, water, and energy flux measurement, and meteorological, plant, and soil data to the science community. (Data and site information are available online at the FLUXNET Web site, http://www-eosdis.ornl.gov/FLUXNET/.) Second, the project supports calibration and flux intercomparison activities. This activity ensures that data from the regional networks are intercomparable. And third, FLUXNET supports the synthesis, discussion, and communication of ideas and data by supporting project scientists, workshops, and visiting scientists. The overarching goal is to provide information for validating computations of net primary productivity, evaporation, and energy absorption that are being generated by sensors mounted on the NASA Terra satellite. Data being compiled by FLUXNET are being used to quantify and compare magnitudes and dynamics of annual ecosystem carbon and water balances, to quantify the response of stand-scale carbon dioxide and water vapor flux densities to controlling biotic and abiotic factors, and to validate a hierarchy of soil-plant-atmosphere trace gas exchange models. Findings so far include 1) net C0 2 exchange of temperate broadleaved forests increases by about 5.7 g C m~2 day-1 for each additional day that the growing season is extended; 2) the sensitivity of net ecosystem C0 2 exchange to sunlight doubles if the sky is cloudy rather than clear; 3) the spectrum of C0 2 flux density exhibits peaks at timescales of days, weeks, and years, and a spectral gap exists at the month timescale; 4) the optimal temperature of net C0 2 exchange varies with mean summer temperature; and 5) stand age affects carbon dioxide and water vapor flux densities.
Wavelet analysis is applied to airborne infrared lidar data to obtain an objective determination of boundaries in aerosol backscatter that are associated with boundary layer structure. This technique allows high-resolution spatial variability of planetary boundary layer height and other structures to be derived in complex, multilayered atmospheres. The technique is illustrated using data from four different lidar systems deployed on four different field campaigns. One case illustrates high-frequency retrieval of the top of a strongly convective boundary layer. A second case illustrates the retrieval of multiple layers in a complex, stably stratified region of the lower troposphere. The method is easily modified to allow for varying aerosol distributions and data quality. Two more difficult cases, data that contain a great deal of instrumental noise and a cloud-topped convective layer, are described briefly. The method is also adaptable to model analysis, as is shown via application to large eddy simulation data.
Time series of mixed layer depth, z i , and stable boundary layer height from March through October of 1998 are derived from a 915-MHz boundary layer profiling radar and CO 2 mixing ratio measured from a 447-m tower in northern Wisconsin. Mixed layer depths from the profiler are in good agreement with radiosonde measurements. Maximum z i occurs in May, coincident with the maximum daytime surface sensible heat flux. Incoming radiation is higher in June and July, but a greater proportion is converted to latent heat by photosynthesizing vegetation. An empirical relationship between z i and the square root of the cumulative surface virtual potential temperature flux is obtained (r 2 ϭ 0.98) allowing estimates of z i from measurements of virtual potential temperature flux under certain conditions. In fair-weather conditions the residual mixed layer top was observed by the profiler on several nights each month. The synoptic mean vertical velocity (subsidence rate) is estimated from the temporal evolution of the residual mixed layer height during the night. The influence of subsidence on the evolution of the mixed, stable, and residual layers is discussed. The CO 2 jump across the inversion at night is also estimated from the tower measurements.
Methodology for determining fluxes of CO 2 and H 2 O vapor with the eddy-covariance method using data from instruments on a 447-m tower in the forest of northern Wisconsin is addressed. The primary goal of this study is the validation of the methods used to determine the net ecosystem exchange of CO 2. Two-day least squares fits coupled with 30-day running averages limit calibration error of infrared gas analyzers for CO 2 and H 2 O signals to ഠ2%-3%. Sonic anemometers are aligned with local streamlines by fitting a sine function to tilt and wind direction averages, and fitting a third-order polynomial to the residual. Lag times are determined by selecting the peak in lagged covariance with an error of ഠ1.5%-2% for CO 2 and ഠ1% for H 2 O vapor. Theory and a spectral fit method allow determination of the underestimation in CO 2 flux (Ͻ5% daytime, Ͻ12% nighttime) and H 2 O vapor flux (Ͻ21%), which is due to spectral degradation induced by long air-sampling tubes. Scale analysis finds 0.5-h flux averaging periods are sufficient to measure all flux scales at 30-m height, but 1 h is necessary at higher levels, and random errors in the flux measurements due to limited sampling of atmospheric turbulence are fairly large (ഠ15%-20% for CO 2 and ഠ20%-40% for H 2 O vapor at lower levels for a 1-h period).
Abstract. In most studies of the net ecosystem-atmosphere exchange of CO2 (NEE) using tower-based eddy covariance (EC) systems it has been assumed that advection is negligible. In this study we use a scalar conservation budget method to estimate the contribution of advection to NEE measurements from a very tall tower in northern Wisconsin. We examine data for June-August 1997. Measured NEE o, calculated as the sum of the EC flux plus the rate of change of storage below the EC measurement level, is expected to be constant with measurement height, and we take the differences between levels as a measure of advection. We find that the average difference in total advection The net ecosystem-atmosphere exchange of CO2 (NEE) has usually been calculated as the sum of a turbulent flux and a storage flux measured from the EC towers. However, it is evident that this approach, which is based on the assumption of horizontal homogeneity, can lead to systematic errors in NEE measurements due to neglect of advection or other factors [Lee and Black, 1993a, b; Goulden et al
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.