Wavelet analysis is applied to airborne infrared lidar data to obtain an objective determination of boundaries in aerosol backscatter that are associated with boundary layer structure. This technique allows high-resolution spatial variability of planetary boundary layer height and other structures to be derived in complex, multilayered atmospheres. The technique is illustrated using data from four different lidar systems deployed on four different field campaigns. One case illustrates high-frequency retrieval of the top of a strongly convective boundary layer. A second case illustrates the retrieval of multiple layers in a complex, stably stratified region of the lower troposphere. The method is easily modified to allow for varying aerosol distributions and data quality. Two more difficult cases, data that contain a great deal of instrumental noise and a cloud-topped convective layer, are described briefly. The method is also adaptable to model analysis, as is shown via application to large eddy simulation data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.