ABSTRACT. Salinity is a major environmental stress to plants. In this study, the ability of plants to tolerate salt was investigated by studying growth, physiological characteristics, and expression levels of genes related to the salt-stress response in the salt-tolerant rice mutant (Till-II-877), which was derived from γ-ray irradiation. Compared to plants grown under normal conditions, the height and root length of wild type (WT) were reduced by approximately 40 and 29% following exposure to salt stress for 3 weeks, whereas Till-II-877 line showed 29 and 23% reductions in plant height and root length, respectively. No significant changes were observed in total chlorophyll content, and the malondialdehyde content of the mutant increased less than that of the WT under salt treatment. Gene expression was compared between the WT and mutant lines using microarray analysis. An unbiased analysis of the gene expression datasets allowed us to identify the pathways involved in salt-stress responses. Among the most significantly affected pathways, changes in gene expression were observed in α-linolenic acid and linoleic acid metabolism (in lipid metabolism), fructose and mannose metabolism and glycolysis-gluconeogenesis (in carbohydrate metabolism), cysteine and methionine metabolism (in amino acid metabolism), and carbon fixation (in the energy metabolism of photosynthetic organisms) under salt stress. These results show that the differential response of plants subjected to salt stress was due to changes in multiple metabolic pathways. These findings increase our understanding of the effects of salt stress in rice and may aid in the development of salt-tolerant rice cultivars.
The complete chloroplast (cp) genome sequence of Pearl millet (Pennisetum glaucum [L.] R. Br.), an important grain and forage crop in the family Poaceae, is reported in this study. The complete cp genome sequence of P. glaucum is 138,172 bp in length with 38.6% overall GC content and exhibits a typical quadripartite structure comprising one pair of inverted repeat (IR) regions (22,275 bp) separated by a small single-copy (SSC) region (12,409 bp) and a large single-copy (LSC) region (81,213). The P. glaucum cp genome encodes 110 unique genes, 76 of which are protein-coding genes, 4 ribosomal RNA (rRNA) genes, 30 transfer RNA (tRNA) genes and 18 duplicated genes in the IR region. Nine genes contain one or two introns. Whole genome alignments of cp genome were performed for genome-wide comparison. Locally collinear blocks (LCBs) identified among the cp genomes showed that they were well conserved with respect to gene organization and order. This newly determined cp genome sequence of P. glaucum will provide valuable information for the future breeding programs of valuable cereal crops in the family Poaceae.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.