Recent advances in thick tissue clearing are enabling high resolution, volumetric fluorescence imaging of complex cellular networks. Fluorescent proteins (FPs) such as GFP, however, can be inactivated by the denaturing chemicals used to remove lipids in some tissue clearing methods. Here, we solved the crystal structure of a recently engineered ultra-stable GFP (usGFP) and propose that the two stabilising mutations, Q69L and N164Y, act to improve hydrophobic packing in the core of the protein and facilitate hydrogen bonding networks at the surface, respectively. usGFP was found to dimerise strongly, which is not desirable for some applications. A point mutation at the dimer interface, F223D, generated monomeric usGFP (muGFP). Neurons in whole mouse brains were virally transduced with either EGFP or muGFP and subjected to Clear Lipid-exchanged Acrylamide-hybridized Rigid Imaging/Immunostaining/In situ hybridization-compatible Tissue-hYdrogel (CLARITY) clearing. muGFP fluorescence was retained after CLARITY whereas EGFP fluorescence was highly attenuated, thus demonstrating muGFP is a novel FP suitable for applications where high fluorescence stability and minimal self-association are required.
α- and α-adrenoceptors (α-AR and α-AR) are closely related G protein-coupled receptors (GPCRs) that modulate the cardiovascular and nervous systems in response to binding epinephrine and norepinephrine. The GPCR gene superfamily is made up of numerous subfamilies that, like α-AR and α-AR, are activated by the same endogenous agonists but may modulate different physiological processes. A major challenge in GPCR research and drug discovery is determining how compounds interact with receptors at the molecular level, especially to assist in the optimization of drug leads. Nuclear magnetic resonance spectroscopy (NMR) can provide great insight into ligand-binding epitopes, modes, and kinetics. Ideally, ligand-based NMR methods require purified, well-behaved protein samples. The instability of GPCRs upon purification in detergents, however, makes the application of NMR to study ligand binding challenging. Here, stabilized α-AR and α-AR variants were engineered using Cellular High-throughput Encapsulation, Solubilization, and Screening (CHESS), allowing the analysis of ligand binding with Saturation Transfer Difference NMR (STD NMR). STD NMR was used to map the binding epitopes of epinephrine and A-61603 to both receptors, revealing the molecular determinants for the selectivity of A-61603 for α-AR over α-AR. The use of stabilized GPCRs for ligand-observed NMR experiments will lead to a deeper understanding of binding processes and assist structure-based drug design.
Directed evolution is a powerful method for engineering proteins towards user-defined goals and has been used to generate novel proteins for industrial processes, biological research and drug discovery. Typical directed evolution techniques include cellular display, phage display, ribosome display and water-in-oil compartmentalization, all of which physically link individual members of diverse gene libraries to their translated proteins. This allows the screening or selection for a desired protein function and subsequent isolation of the encoding gene from diverse populations. For biotechnological and industrial applications there is a need to engineer proteins that are functional under conditions that are not compatible with these techniques, such as high temperatures and harsh detergents. Cellular High-throughput Encapsulation Solubilization and Screening (CHESS), is a directed evolution method originally developed to engineer detergent-stable G proteins-coupled receptors (GPCRs) for structural biology. With CHESS, library-transformed bacterial cells are encapsulated in detergent-resistant polymers to form capsules, which serve to contain mutant genes and their encoded proteins upon detergent mediated solubilization of cell membranes. Populations of capsules can be screened like single cells to enable rapid isolation of genes encoding detergent-stable protein mutants. To demonstrate the general applicability of CHESS to other proteins, we have characterized the stability and permeability of CHESS microcapsules and employed CHESS to generate thermostable, sodium dodecyl sulfate (SDS) resistant green fluorescent protein (GFP) mutants, the first soluble proteins to be engineered using CHESS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.