Tunnel Field Effect Transistor can be introduced as an emerging alternate to MOSFET which is energy efficient and can be used in low power applications. Due to the challenge involved in integration of band to band tunneling generation rate, the existing drain current models are inaccurate. A compact analytical model for simple tunnel FET and pnpn tunnel FET is proposed which is highly accurate. The numerical integration of tunneling generation rate in the tunneling region is performed using Simpson’s rule. Integration is done using both Simpson’s 1/3 rule and 3/8 rule and the models are validated against numerical device simulations. The models are compared with existing models and it is observed that the proposed models show excellent agreement with device simulations in the entire region of operation with Simpson’s 3/8 rule exhibiting the maximum accuracy.
Tunnel Field Effect Transistor can be introduced as an emerging alternate to MOSFET which is energy efficient and can be used in low power applications. Due to the challenge involved in integration of band to band tunneling generation rate, the existing drain current models are inaccurate. A compact analytical model for simple tunnel FET and pnpn tunnel FET is proposed which is highly accurate. The numerical integration of tunneling generation rate in the tunneling region is performed using Simpson's rule. Integration is done using both Simpson's 1/3 rule and 3/8 rule and the models are validated against numerical device simulations. The models are compared with existing models and it is observed that the proposed models show excellent agreement with device simulations in the entire region of operation with Simpson's 3/8 rule exhibiting the maximum accuracy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.