Hydrothermal reduction is a promising approach for graphene oxide (GO) reduction since it is environmentally friendly, simple, and cost effective. We present a detailed study of structural changes occurring in graphene oxide during the reduction process. The correlations between the interlayer spacing, chemical states, work functions, surface morphology, level of disorders, the number of layers, and processing time are elucidated. The results reveal that GO flakes remain in the early stage of the reduction process and that they are fully reduced after a 4-h hydrothermal treatment. With an increase in the reduction time, the resulting product, i.e., reduced graphene oxide, has a low oxygen content, small interlayer spacing, and crumbled and wrinkled structures. We are convinced that these properties can be tuned to a desired level for various applications.
Germanene, a 2D honeycomb germanium crystal, is grown at graphene/Ag(111) and hexagonal boron nitride (h‐BN)/Ag(111) interfaces by segregating germanium atoms. A simple annealing process in N2 or H2/Ar at ambient pressure leads to the formation of germanene, indicating that an ultrahigh‐vacuum condition is not necessary. The grown germanene is stable in air and uniform over the entire area covered with a van der Waals (vdW) material. As an important finding, it is necessary to use a vdW material as a cap layer for the present germanene growth method since the use of an Al2O3 cap layer results in no germanene formation. The present study also proves that Raman spectroscopy in air is a powerful tool for characterizing germanene at the interfaces, which is concluded by multiple analyses including first‐principles density functional theory calculations. The direct growth of h‐BN‐capped germanene on Ag(111), which is demonstrated in the present study, is considered to be a promising technique for the fabrication of future germanene‐based electronic devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.