While the bulk of human exposure to mercury is through the consumption of marine fish, most of what we know about mercury methylation and bioaccumulation is from studies of freshwaters. We know little of where and how mercury is methylated in the open oceans, and there is currently a debate whether methylmercury concentrations in marine fish have increased along with global anthropogenic mercury emissions. Measurements of mercury concentrations in Yellowfin tuna caught off Hawaii in 1998 show no increase compared to measurements of the same species caught in the same area in 1971. On the basis of the known increase in the global emissions of mercury over the past century and of a simple model of mercury biogeochemistry in the Equatorial and Subtropical Pacific ocean, we calculate that the methylmercury concentration in these surface waters should have increased between 9 and 26% over this 27 years span if methylation occurred in the mixed layer or in the thermocline. Such an increase is statistically inconsistent with the constant mercury concentrations measured in tuna. We conclude tentatively that mercury methylation in the oceans occurs in deep waters or in sediments.
Hydrogen peroxide (H2O2), which produces breaks in cellular DNA, has not hitherto been shown to cause degradation of DNA. In this investigation it is shown that if transcription is blocked with rifampin, treatment with H2O2 causes degradation of DNA to nearly the same extent as does gamma-radiation. Further, if cells are given a treatment with H2O2 and incubated for 50 min, the amount of degradation in a second treatment is markedly less. This is attributed to the induction of the inhibitor of post-irradiation degradation of DNA (prd) by the first treatment. There is thus a double action of H2O2: first, to induce inhibition, and second, to cause degradation of DNA to begin in non-induced cells. The genetic dependence of induction by H2O2 mimics that of ionizing radiation. Accordingly, the induction process does not occur in recA- and lex- cells, because they are not inducible and is absent in recB- cells because they lack exonuclease V, the major component of prd. Potassium iodide (KI), an OH radical scavenger, negates the action of peroxide on DNA. The results obtained in this study suggest a possible theory for the evolution of radiation response systems
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.