Figure 1: To remove the foremost person from this video, both the dynamic scene elements and the background behind it need to be restored. In this sample from our Museum sequence, the right-hand-side of each frame pair shows the inpainted result.
AbstractRemoving dynamic objects from videos is an extremely challenging problem that even visual effects professionals often solve with time-consuming manual frame-by-frame editing. We propose a new approach to video completion that can deal with complex scenes containing dynamic background and non-periodical moving objects. We build upon the idea that the spatio-temporal hole left by a removed object can be filled with data available on other regions of the video where the occluded objects were visible. Video completion is performed by solving a large combinatorial problem that searches for an optimal pattern of pixel offsets from occluded to unoccluded regions. Our contribution includes an energy functional that generalizes well over different scenes with stable parameters, and that has the desirable convergence properties for a graph-cut-based optimization. We provide an interface to guide the completion process that both reduces computation time and allows for efficient correction of small errors in the result. We demonstrate that our approach can effectively complete complex, high-resolution occlusions that are greater in difficulty than what existing methods have shown.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.